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Preface to the second edition

There have been ten years since the publication of the first edition of this
book. Since then, new applications and developments of the Malliavin cal-
culus have appeared. In preparing this second edition we have taken into
account some of these new applications, and in this spirit, the book has
two additional chapters that deal with the following two topics: Fractional
Brownian motion and Mathematical Finance.

The presentation of the Malliavin calculus has been slightly modified
at some points, where we have taken advantage of the material from the
lectures given in Saint Flour in 1995 (see reference [248]). The main changes
and additional material are the following:

In Chapter 1, the derivative and divergence operators are introduced in
the framework of an isonormal Gaussian process associated with a general
Hilbert space H. The case where H is an L2-space is trated in detail after-
wards (white noise case). The Sobolev spaces D*”, with s is an arbitrary
real number, are introduced following Watanabe’s work.

Chapter 2 includes a general estimate for the density of a one-dimensional
random variable, with application to stochastic integrals. Also, the com-
position of tempered distributions with nondegenerate random vectors is
discussed following Watanabe’s ideas. This provides an alternative proof
of the smoothness of densities for nondegenerate random vectors. Some
properties of the support of the law are also presented.

In Chapter 3, following the work by Alds and Nualart [10], we have
included some recent developments on the Skorohod integral and the asso-
ciated change-of-variables formula for processes with are differentiable in
future times. Also, the section on substitution formulas has been rewritten
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and an Ito-Ventzell formula has been added, following [248]. This for-
mula allows us to solve anticipating stochastic differential equations in
Stratonovich sense with random initial condition. .

There have been only minor changes in Chapter 4, and two additional
chapters have been included. Chapter 5 deals with the stochastic calculus
with respect to the fractional Brownian motion. The fractional Brownian

“motion is a self-similar Gaussian process with stationary increments and
variance t2f/. The parameter H € (0,1) is called the Hurst parameter.
The main purpose of this chapter is to use the the Malliavin Calculus
techniques to develop a stochastic calculus with respect to the fractional
Brownian motion.

Finally, Chapter 6 contains some applications of Malliavin Calculus in
Mathematical Finance. The integration-by-parts formula is used to com-
pute “greeks”, sensitivity parameters of the option price with respect to the
underlying parameters of the model. We also discuss the application of the
Clark-Ocone formula in hedging derivatives and the additional expected
logarithmic utility for insider traders.

August 20, 2005 David Nualart



Preface

The origin of this book lies in an invitation to give a series of lectures on
Malliavin calculus at the Probability Seminar of Venezuela, in April 1985.
The contents of these lectures were published in Spanish in [245]. Later
these notes were completed and improved in two courses on Malliavin cal-
culus given at the University of California at Irvine in 1986 and at Ecole
Polytechnique Fédérale de Lausanne in 1989. The contents of these courses
correspond to the material presented in Chapters 1 and 2 of this book.
Chapter 3 deals with the anticipating stochastic calculus and it was de-
veloped from our collaboration with Moshe Zakai and Etienne Pardoux.
The series of lectures given at the Eighth Chilean Winter School in Prob-
ability and Statistics, at Santiago de Chile, in July 1989, allowed us to
write a pedagogical approach to the anticipating calculus which is the ba-
sis of Chapter 3. Chapter 4 deals with the nonlinear transformations of the
Wiener measure and their applications to the study of the Markov property
for solutions to stochastic differential equations with boundary conditions.
The presentation of this chapter was inspired by the lectures given at the
Fourth Workshop on Stochastic Analysis in Oslo, in July 1992. I take the
opportunity to thank these institutions for their hospitality, and in par-
ticular I would like to thank Enrique Cabana, Mario Wschebor, Joaquin
Ortega, Siileyman ﬁstiinel, Bernt @ksendal, Renzo Cairoli, René Carmona,
and Rolando Rebolledo for their invitations to lecture on these topics.

We assume that the reader has some familiarity with the It6 stochastic
calculus and martingale theory. In Section 1.1.3 an introduction to the Ito6
calculus is provided, but we suggest the reader complete this outline of the
classical It6 calculus with a review of any of the excellent presentations of
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this theory that are available (for instance, the books by Revuz and Yor
[292] and Karatzas and Shreve [164]).

In the presentation of the stochastic calculus of variations (usually called
the Malliavin calculus) we have chosen the framework of an arbitrary cen-
tered Gaussian family, and have tried to focus our attention on the notions
and results that depend only on the covariance operator (or the associated
Hilbert space). We have followed some of the ideas and notations developed
by Watanabe in [343] for the case of an abstract Wiener space. In addition
to Watanabe’s book and the survey on the stochastic calculus of variations
written by Tkeda and Watanabe in [144] we would like to mention the book
by Denis Bell [22] (which contains a survey of the different approaches to
the Malliavin calculus), and the lecture notes by Dan Ocone in [270]. Read-
ers interested in the Malliavin calculus for jump processes can consult the
book by Bichteler, Gravereaux, and Jacod [35].

The objective of this book is to introduce the reader to the Sobolev dif-
ferential calculus for functionals of a Gaussian process. This is called the
analysis on the Wiener space, and is developed in Chapter 1. The other
chapters are devoted to different applications of this theory to problems
such as the smoothness of probability laws (Chapter 2), the anticipating
stochastic calculus (Chapter 3), and the shifts of the underlying Gaussian
process (Chapter 4). Chapter 1, together with selected parts of the sub-
sequent chapters, might constitute the basis for a graduate course on this
subject.

I would like to express my gratitude to the people who have read the
several versions of the manuscript, and who have encouraged me to com-
plete the work, particularly I would like to thank John Walsh, Giuseppe Da
Prato, Moshe Zakai, and Peter Imkeller. My special thanks go to Michael
Rockner for his careful reading of the first two chapters of the manuscript.

March 17, 1995 David Nualart
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Introduction

The Malliavin calculus (also known as the stochastic calculus of variations)
is an infinite-dimensional differential calculus on the Wiener space. It is tai-
lored to investigate regularity properties of the law of Wiener functionals
such as solutions of stochastic differential equations. This theory was ini-
tiated by Malliavin and further developed by Stroock, Bismut, Watanabe,
and others. The original motivation, and the most important application of
this theory, has been to provide a probabilistic proof of Hormander’s “sum
of squares” theorem.

One can distinguish two parts in the Malliavin calculus. First is the
theory of the differential operators defined on suitable Sobolev spaces of
Wiener functionals. A crucial fact in this theory is the integration-by-parts
formula, which relates the derivative operator on the Wiener space and the
Skorohod extended stochastic integral. A second part of this theory deals
with establishing general criteria in terms of the “Malliavin covariance ma-
trix” for a given random vector to possess a density or, even more precisely,
a smooth density. In the applications of Malliavin calculus to specific exam-
ples, one usually tries to find sufficient conditions for these general criteria
to be [ulfilled.

In addition to the study of the regularity of probability laws, other appli-
cations of the stochastic calculus of variations have recently emerged. For
instance, the fact that the adjoint of the derivative operator coincides with
a noncausal extension of the It6 stochastic integral introduced by Skoro-
hod is the starting point in developing a stochastic calculus for nonadapted
processes, which is similar in some aspects to the It6 calculus. This antic-
ipating stochastic calculus has allowed mathematicians to formulate and
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discuss stochastic differential equations where the solution is not adapted
to the Brownian filtration.

The purposes of this monograph are to present the main features of the
Malliavin calculus, including its application to the proof of Hérmander’s
theorem, and to discuss in detail its connection with the anticipating stoch-
astic calculus. The material is organized in the following manner:

In Chapter 1 we develop the analysis on the Wiener space (Malliavin
calculus). The first section presents the Wiener chaos decomposition. In
Sections 2,3, and 4 we study the basic operators D, §, and L, respectively.
The operator D is the derivative operator, § is the adjoint of D, and L
is the generator of the Ornstein-Uhlenbeck semigroup. The last section of
this chapter is devoted to proving Meyer’s equivalence of norms, following
a simple approach due to Pisier. We have chosen the general framework of
an isonormal Gaussian process {W(h),h € H} associated with a Hilbert
space H. The particular case where H is an L? space over a measure space
(T, B, 1) (white noise case) is discussed in detail.

Chapter 2 deals with the regularity of probability laws by means of the
Malliavin calculus. In Section 3 we prove Hérmander’s theorem, using the
general criteria established in the first sections. Finally, in the last section
we discuss the regularity of the probability law of the solutions to hyperbolic
and parabolic stochastic partial differential equations driven by a space-
time white noise.

In Chapter 3 we present the basic elements of the stochastic calculus for
anticipating processes, and its application to the solution of anticipating
stochastic differential equations. Chapter 4 examines different extensions of
the Girsanov theorem for nonlinear and anticipating transformations of the
Wiener measure, and their application to the study of the Markov property
of solution to stochastic differential equations with boundary conditions.

Chapter 5 deals with some recent applications of the Malliavin Calcu-
lus to develop a stochastic calculus with respect to the fractional Brownian
motion. Fiinally, Chapter 6 presents some applications of the Malliavin Cal-
culus in Mathematical Finance.

The appendix contains some basic results such as martingale inequalities
and continuity criteria for stochastic processes that are used along the book.



