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Preface

Imaging is an interdisciplinary research area with profound applications in
many areas of science, engineering, technology, and medicine. The most prim-
itive form of imaging is visual inspection, which has dominated the area before
the technical and computer revolution era. Today, computer imaging covers
various aspects of data filtering, pattern recognition, feature extraction, com-
puter aided inspection, and medical diagnosis. The above mentioned areas are
treated in different scientific communities such as Imaging, Inverse Problems,
Computer Vision, Signal and Image Processing, . .., but all share the common
thread of recovery of an object or one of its properties.

Nowadays, a core technology for solving imaging problems is regulariza-
tion. The foundations of these approximation methods were laid by Tikhonov
in 1943, when he generalized the classical definition of well-posedness (this
generalization is now commonly referred to as conditional well-posedness).
The heart of this definition is to specify a set of correctness on which it
is known a priori that the considered problem has a unique solution. In
1963, Tikhonov [371,372] suggested what is nowadays commonly referred to
as Tikhonov (or sometimes also Tikhonov-Phillips) regularization. The ab-
stract setting of regularization methods presented there already contains all
of the variational methods that are popular nowadays in imaging. Morozov’s
book [277], which is the English translation of the Russian edition from 1974,
is now considered the first standard reference on Tikhonov regularization.

In the early days of regularization methods, they were analyzed mostly the-
oretically (sec, for instance, [191,277,278,371-373]), whereas later on numer-
ics, efficient solutions (see, for instance, the monographs (111,204,207, 378]),
and applications of regularization methods became important (see, for in-
stance, [49,112-114]).

Particular applications (such as, for instance, segmentation) led to the
development of specific variational methods. Probably the most prominent
among them is the Mumford-Shah model (276, 284], which had an enor-
mous impact on the analysis of regularization methods and revealed chal-
lenges for the efficient numerical solution (see, e.g., [86,88]). However, it is
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VIII Preface

notable that the Mumford-Shah method also reveals the common features
of the abstract form of Tikhonov regularization. In 1992, Rudin, Osher, and
Fatemi published total variation regularization [339]. This paper had an enor-
mous impact on theoretical mathematics and applied sciences. From an an-
alytical point of view, properties of the solution of regularization functionals
have been analyzed (see, for instance, [22]), and efficient numerical algorithms
(see [90,133,304]) have been developed.

Another stimulus for regularization methods has come from the develop-
ment of non-linear parabolic partial differential equations for image denoising
and 7mage analysis. Here we are interested in two types of evolution equa-
tions: parabolic subdifferential inclusion equations and morphological equa-
tions (see [8,9,194]). Subdifferential inclusion equations can be associated in
a natural way with Tikhonov regularization functionals. This for instance ap-
plies to anisotropic diffusion filtering (see the monograph by Weickert [385]).
As we show in this book, we can associate non-convezr regularization func-
tionals with morphological equations.

Originally, Tikhonov type regularization methods were developed with the
emphasis on the stable solution of inverse problems, such as tomographical
problems. These inverse problems are quite challenging to analyze and to
solve numerically in an efficient way. In this area, mainly simple (quadratic)
Tikhonov type regularization models have been used for a long time. In con-
trast, the underlying physical model in image analysis is simple (for instance,
in denoising, the identity operator is inverted), but sophisticated regulariza-
tion techniques are used. This discrepancy between the different scientific
areas led to a split.

The abstract formulation of Tikhonov regularization can be considered in
finite dimensional space setting as well as in infinite dimensional function
space setting, or in a combined finite-infinite dimensional space setting. The
latter is frequently used in spline and wavelet theory. Moreover, we mention
that Tikhonov regularization can be considered in a deterministic setting as
well as in a stochastic setting (see, for instance, [85,231]).

This book attempts to bridge the gap between the two research areas
of image analysis and imaging problems in inverse problems and to find a
common language. However, we also emphasize that our research is biased
toward deterministic regularization and, although we use statistics to motivate
regularization methods, we do not make the attempt to give a stochastic
analysis.

For applications of imaging, we have chosen examples from our own re-
search experience, which are denoising, telescope imaging, thermoacoustic
imaging, and schlieren tomography. We do not claim that these applications
are most representative for imaging. Certainly, there are many other active
research areas and applications that are not touched in this book.

Of course, this book is not the only one in the field of Mathematical Imag-
ing. We refer for instance to [26,98]. Imaging from an inverse problems point
of view is treated in [49]. There exists also a vast number of proceedings and



Preface IX

edited volumes that are concerned with mathematical imaging; we do not
provide detailed references on these volumes. Another branch of imaging is
mathematical methods in tomography, where also a vast amount of literature
exists. We mention exemplarily the books [232,288,289].

The objective of this book certainly is to bridge the gap between regu-
larization theory in image analysis and in inverse problems, noting that both
areas have developed relatively independently for some time.
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1

Case Examples of Imaging

In this chapter, we study several imaging examples from our own research
experience. The first example concerns the problem of denoising. The other
examples are related to inverse problems, which in general are defined as
problems of recovering the cause for an observed effect (see [152]).

1.1 Denoising

One of the most important problems in digital image processing is denoising.
Noise is usually considered as undesired perturbation in an image. However.
it appears during every data acquisition process, for instance during recording
with CCD sensors (see [359]).

Denoising is the process of reducing spurious noise in an image. It is either
used to make images look “nicer” or as a preprocessing step for image analysis
and feature extraction.

In order to highlight the importance of denoising for image analysis, we
apply a segmentation and an edge detection algorithm to the ultrasound data
shown in Fig. 1.1. It can be seen from Figs. 1.2 and 1.3 that after filtering
in a preprocessing step, the implementation of these algorithms yields clearly
better results.

e The task of segmentation is to retrieve all pixels belonging to an object of
interest in a given image.
As an example, we consider segmentation of the vein in the ultrasound im-
age Fig. 1.1, which is the circular, dark domain in the center. To that end
we use the following region-growing algorithm based on intensity thresh-
olding (see [336]): Given an intensity threshold ¢ and a seed pizel p with an
intensity less than or equal to ¢, we start with the initial region R := {p}
and iteratively obtain regions R**! from R’ by adding pixels that are
neighboring R and whose intensities are less than or equal to c. The

O. Scherzer et al., Variational Methods in Imaging, 3
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1 Case Examples of Imaging

Fig. 1.1. Results of different variational regularization techniques for denoising
ultrasound data (top left), which are described in Chapter 4.

region growing stops if no more pixels satisfying these two conditions can
be found. Figure 1.2 shows the result of the region-growing algorithm ap-
plied to the original and filtered data in Fig. 1.1. The results imply that
the segmentation is unsatisfactory if the algorithm is applied to unfiltered
data.

Another example that reveals the importance of denoising as preprocessing
step in image analysis is edge detection. Here the goal is to extract the
boundaries of objects or regions in the image.

One widely used method for edge detection is the Sobel operator: Let

-1 0 1 =1 =g =1
G.=|-20 2], ¢,=| 00 0
-1 0 1 1 2 1

We denote the discrete convolution (see [184, Sect. 3.4]) of an image u,
interpreted as real-valued matrix, with the masks G, and G, by G, * u
and G, * u, respectively. The Sobel operator is given by



1.1 Denoising 5

Fig. 1.2. Segmentation of the vein in the ultrasound image Fig. 1.1. The white
regions indicate the results of a region-growing algorithm applied to the original
data (top left) and the different smoothed images. Segmentation of the original data
provides a region with fuzzy boundary. When the algorithm is applied to filtered
data, the results show a more regular shape that better reflects the vein’s true
boundary.

(I:UH\/(GI*u)2+(Gy*u)2.

The value (Gu);; is large near edges and small in homogeneous regions of
the image. As can be seen from Fig. 1.3, the edge detector gives signif-
icantly better results for the filtered than for the unfiltered data, where
spurious edges appear.

Among the variety of denoising techniques, two classes are of importance
for this book: wariational methods, which are discussed in Chapter 4,
and evolutionary partial differential equations, which are discussed in
Chapter 6.



6 1 Case Examples of Imaging

Fig. 1.3. Edge detection with the Sobel operator. The images show the value of the
Sobel operator applied to the original (top left) and filtered data. Using filtered data
improves the quality of detection, as spurious edges created by noise are suppressed.

1.2 Chopping and Nodding

Chopping and nodding (see [51, 148,230, 252, 333|) is a common approach
for the removal of background noise in infrared observations of the sky with
ground-based telescopes.

The basic assumption is that the background noise can be decomposed into
two components, the first of which mainly depends on the time of acquisition
of the image, whereas the second, residual noise, varies in time at a slower
rate and mainly depends on the optical path of light through the telescope.

We denote by x € S? the position in the sky the telescope, located at
0 € R3, is originally pointing to. Here S? denotes the unit sphere in R®. From
this position x, a signal u; is recorded.

Then a chopping procedure is performed, which consists in tilting the sec-
ondary mirror of the telescope by a certain angle (see Fig. 1.4). After tilting,
the telescope points to a position y € S?, and a signal u, is recorded. The



