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ON QUASI-PRIMITIVE RINGS (III)

Xvu YoNGHUA
(Fudan University)

Introduction

Tt is well known that every non-zero nil semi-simple right Artinian ring R can be
expressed uniquely as the direct sum of a finite number of minimal right ideals. To
obtain deeper information we naturally ask what kind of rings R can contain identity
and be expressed as a direct sum of a finite number of right ideals which need not fo
be minimal. In order to proceed we introduce here the notion of M-Artinian rings
which extends the notion of the ordinary Artinian rings.

In this paper we shall give a structure of M-Artfinian rings. In general, the
M-Arfinan rings are not the quasi-primitive rings as stated in [1]. Therefore we’'d
better modify slightly the definifion of the quasi-primifive rings and extend it to the
so-called weak quasi-primitive rings which contain the M-Artinian rings and also hold
all the resulis of quasi-primitive rings we have obtaind in [1, 2].

§ 1. M-Artinian rings

In this seotion we introduce the concept of M-Artinian ring and give its structure.

Definition 1.1. Let R be an associative ring and M its subset. M is said to be an
S -subset ©f and only i f the following conditions are satisfied:

(i) o0& M, ,

(ii) let e be an idempotent of R, If ae=a €M or ea=a €M, then e€E M,

(iii) 4f e, and ey are two pairwise crthogonal idempotent elements of M, then

‘eyReg N\ M ).

For example, let M =R\0, then it is clear that M satisfies all conditions of
definition 1.1.

Definition'1.2. A right (left) ideal L of R is said to be an M-right (left) idael,
if M\ L#(. An M-right (left) ideal L is called M-minimal, if there exists an M-right
(left) ideal L' such that LN ML\ M, then it must be LN M=L'NM.

Definition 1.8. Let Ly and L, be two right (left) ideals of R, Ly and Ly are
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called M-equivalent if and ondy of Ly(\ M =Ly M.

According to definition 1.8, we can introduce an equivalence relation which can
clagsify all right (left) ideals of R into pairwise disjoint equivalence classes.

Proposition 1.1. Let C be an equivalence class in the meaning of definition 1.3,
then there exists a smallest element in C,

Proof Denote L; by elements of C and let L=LQ° L;. Since L;, L;€C, we have
LNM=L;NM. Hence LNM=L,N\ M. It is easy to see LEC. This completes our
proof.

For the sake of simplity we call the smallest element of C in definition 1.1 the
smallest element of class.

Definition 1.4. Let L be an M-right (left) ideal of R. An elment a€ M N L s
called an inductive element if and only if a satisfies the following conditions:

(i) aL=L (La=L),

(ii) let eER and ae=a (a=ea), then ¢—e must be nilpotent.

Let L be a right ideal, e € R. We denote e'?= {r € L|er=0} the right annihilator
of e. Similarly we have “te={r € L|re=0} for left ideal L.

Definition 1.5. Let R be an associative ring, and M be an S-subset of R, R is
said to be an M-Artinian ring (or left M-Ariinian ring) if and only if R satisfies the
following conditions:

(i) R satisfies the minimal condition for M-right (left) ideals, @.c., if LyN M2
LNM32--isa deséendfing chain for LiN M where L; are M-right (left) ideals, then
there exists a positive integer n such that Ly\ M = Lpqa N\ M =---.

(ii) every smallest element L of class whose elements are equivalent to an M-minimal
right (left) ideal must have an inductive element of L.

(iii) let L be an M-right (left) ddeal, if LN M has an idempotent e such that
eR+ L, then e (*%e) must be M-right (left) ideal.

Now we give an example for M-Artinian ring.

Any nil semi-simple Artinian ring must be M-Artinian. In fact, if we take
M= R\0, then is clear that M is an -subset of R. Hence every M-right ideal is a
non-zero right ideal and the minimum condition for M-right ideals is the minimum
condition for right ideals. On the other hand, let L be a minimal right ideal of
semi-simple Artinian ring, then if is clear that every non-zero element @ of L must be
an induetive element of L, this means that the condition (ii) of definition 1.5 is
satisfied. The condition (iii) can be easily obtained by etZ#0.

Now we are going to study the structure of M-Artinian ring.

Lemma 1.1. Let R be an M-Artinian ring. Then every M-right ideal L of R
contains an wdempotent element which contains also in M

Proof It follows from the assumption of R that every M-right ideal L must
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contain an M-minimal right ideal L,. Without less of generality, it can be assumed
that L, is the smallest element of class. By the assumption of definition 1.5, it is clear
that Ly has an inductive element ¢ such that e € M Ly as well as aly=1I, and an
element e, € L such that a=ae,. Hence ej —e¢, is nilpotent. Let zo=ej—e,, then axzy=0
and there exists an integer no>>0 such that af %0, ai=0. Set e;=ey+2o— 2¢520, We
have e; € Ly. From aey=ae,=a it follows that e; does not nilpotent. On the other hand,
let @y =ef—ey, then @y € Ly, @4 =43 —8aj. Hence there exists a positive integer my<ng
such that #)'=0. Let eg=eq+ay— 2e1@y, then e, € Ly and aeg=aes. It is easy to show
that e3— ey =42} — 827, Now let #,—ei—e,, then there exists a positive integer na<my
such that 3 =0. We can go on in this way and after a finite steps we must stop. Hence
there exists a positive integer m such that e —e,=0 and e,=¢€n_1+Tn-1—26n—1Tm—1+
According to the inductive method it is clear that e, € Ly, aen=atp—q=--=aeo=
a€ M N L. Therefore from the property of .%-subsel M it follows e, € LN M.

Lemma 1.2. Let R be an M-Artinian ring, then every M-right ideal L must be
L=eR where =e€ M.

Proof From lemma 1.1 it follows that L has an idempotent element ¢ in M. If
L#eR, then ¢'* must be an M-right ideal by assumption. Now we will show that
there exists an idempolent element ¢' such that ¢'R=1L. In fact, if all idempotent
elements ¢; of LM have the property Ls#e¢R then ¢! are all M-right ideals and
eit#0, Now let 2= {¢/"|ef=e;€LN M}, then by the assumption there exists an
minimal element e*'* in X such that e"'* contains an M-minimal right ideal L,,
Without loss of generalify we can assume that L, is a minimal element of class. Then
by the proof of the lemma 1.1 we know that there exists an element ¢ € M N L, such
that alo= Ly and an idempotent element e, € M N L, such that aep=a, ¢R=L,. Thus
we have e'¢y=0. Pufting e'=¢"—epe*+eo it is clear that ¢ €L, ae'=aeco=aEM.
Therefore ¢' € M by the property of .#-subset. On the hand, we know e'*=¢'50. Since
eep=ei=e#0 we have eyefe'r, it follows M Ne‘LEM Ne*'l from e =e*2=¢",
eo Ee*E, Since ¢/ € L\ M, hence ¢'*X €2, but this confradict to the fact that e*‘’ is
M-minimal in 2. Hence there exists ¢?=e€ L[| M such that L=eR.

Corollary. There exists only one element in any class C of M-right ideals.

Proof 1If Ly, Ly€C, then by lemma 1.2 Ly=¢.R, Lo=e,R and ¢;, ea€ Ly N M=
LN M. Hence Ly= L,.

Lemma 1.8. Let Lo L are M-right ideals and Lo#L, If Ly=eoR, et=eoE M,
L=¢R, e=eC€ M, then there exists an M-right tdeal Ly=eR such that Lo®Li=L,
where €2 =ey, €oe1=e10=0.

Proof Put e;=e—ege, then e; € L. Since ¢, € L, then eey=e,. Therefore we have
el =e1, e00=¢ee1=0. Let e =ey+ey, then e €L. Since ¢ R= (ey-+e¢1) R= eocR@esR,
L=eR= (e;-+epe1) REe' RE L, hence we have L=¢'R= L@ L.
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Now we attempt to show e; € M. Since eo € M N Ly, Lo+ L, eg” is M-right ideal by
definition 1.5. It is easy fo see that e3“=e;R. Hence ¢, R is an M-right ideal. Therefore
there exists an element a€e, RN M. It follows that e;a=a € M. By the property of
& -subset we have e; € M.

Theorem 1.1. let R be an M-Artivian ring. Then R=e;R@e. RO @eR,
where e;R are all M-minimal right ideals, ei=e, €M, If " R=0 then R contains the
identity,

Proof By lemma 1.1 R has an M-minimal right ideal Ly=e,R, ei=e;EM. By
lemma 1.2 and 1.8 R=L;® L}, where L =¢\R, ¢*=¢\ € M and ¢je; =¢:¢i=0. Now we
consider L. By lemma 1.3 there exist M-minimal right ideals Ly=eR, ex’=es €M,

v =ebR, éi?=eh € M such that eseh=ehes =0, L) =L®L), R=L@®L®L5.

Let ea=e5 —eses, then from ejes=eseh =0 it follows e3—=ey. Since ees=es €M, we
have es € M. Thus R=e,R@esR® L), where eieg=ese1=0, eqLs=eaLs=0.

Now we apply the induction as follows: assume that R can be expressed as a direct
sum of M-right ideals

R=e,R®es R®- - Der RO L,
where ¢ =¢,;€ M, ee;=d,e;, e;L,=0, 4, j=1, ---, k,

By lemma 1.8 there exist M-minimal right ideals Lyy1=¢p41 R, €131 =60 €M and
Liy1=€1R, €%1=€1 €M such that Lj=Ly1®Lis1, €e+16b41 = Ciosi€iosr = 0. Let
Cri1=Cpy1— ﬁl €rs16;, then from egp,,=0, 4=1, ---, k it follows ¢f.;=e6xi1, Cr+16i=
00us1=0, i1l s —0. Since ey1ehs1 —6i21=ekss € M, wo have ey41 €M by the property
of .#-subset. Therefore we have R=e; R®-+@ey 1 R L1, where ¢; =, E M, eg;=e0y,
eLi.1=0, ¢, j=1, -+, k, k+1. By the induction we have R=e;R@®---@e RO L, for
any positive integer n,

Set ¥, =e,RPe; 1R @e,BDL,,,, we oblain a descending chain R=%12.%,2
w2 %, 2---. By assumption of the condition for M-minimal right ideals there exists a
positive integer m such that LN M =% paN M =---. Hence R=e;R®---@enR, where
¢,R are all M-minimal right ideals ¢f —¢;E M, ee;—edy, 9, j=1, -+, m,

Now we put 1=‘"221 ¢ and denote *t1={r&R|r1=0}. If s€ER, r&®1, then
rls=7rs=0, hence ’”'l1== BLR, and #11=0 by the assumption. Therefore (#—=1) 1=0 for
any z€ R, hence z== 1 and 1 is the identity of R.

Corollary. Let R be M-Artinian ring, then there exist mo nil right ideal of R
which is M-right ideal.

Theorem 1.2. Let R be an M-Artinian ring, then there exist matriz units {6} sxn
such that R1=§,] Be;;, where B={r € R|re;j=eyr, 4, j=1, +=-, n}, 1=§e.¢i and e; € M
for i},

Proof R= 2@6‘12, eie;=0ije;, 4, j=1, «++, n by theorem 1.1 putl g=e¢y, =1, -,
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n. By assumption we know that e;Re;\ M =@ for ¢>4. Now we choose an arbitrary
element e;=e0,e;Ee.Re;N M, o;; €R. Since ¢R is M-minimal we have ¢;R=¢R for
4> 4. Therefore there exists an element o; € R such that eye;05¢,=¢;. Denote e;=e;0;6;,
then e;e;,=e¢;=e; for i>>5. We are going to show that e;e;—e;; for j<<i. Since eyese;=
e€;;= €, we have ¢;;(e;—e;e,;) =0. Now we first show that ¢ —E@e,R In fact, if we
put Lo=(1—e¢;)R, L=ej®, then we have e2=e€M, ¢eR- L by lemma 1.2. Since
(1—e)e;=¢, €M, i+j, it follows from the property of .#-subset that 1—e;€ M. If
L+ Ly, then by lemma 1.3 there exists ef=e; € M such that L@ Li=L, Li=eR,
(1—e;)es=e1(1—e;) =0. Therefore es R = eje; RT e¢;R. Since e; R and e;R are M-minimal
right ideals, we have e;R=¢,R and L=e R+ (1—¢)R= e,R+Ze¢R=~ R. This contra-
dicts e;&ei®=L. Hence L= Ly, ¢;® = zetR It follows therefore from e;;(e;—ejei;) = 0
that e;—eje; € X e.R. Hence eje;=ej;=e¢;. Thus we have already constructed nxn
number of mad‘;;;x units {e;}n,n. Now we prove the last statement. Let a €R, a;=
;i‘i @y @ ey, then it is easy to see a;e.s—e,.ay;. Hence a;; € B and ‘gla”eu= lal=al.

Theorem 1.3. Let R be an M-Artinian ring. Then R can be expressed as R1=
‘"EJBe.,, as stated in theorem 1.2. Denote M, =e,, R1, K =e,, Re;,, then

svzﬁé@zceh,. =§;1@Be,,

such that R1 is the ring of K (or B)-endomorphisms of M, and K =e,,B= B, Similarly
if we denote A, = Re,,, then we have Ak=§}1® es I such that R s the ring of K (or B)-u
endomorphisms of A4,.

Proof By theorem 1.2 R.1= i,ji-;l Be,;, hence

My=euRe1= ? Be,., = "%c e Beaesy

n n n
=l g Rey = EGALReMe}.j - E K €.

2 Ke, 6= ;} Be,je,,= K = Be,,.

It is easy to see ¢, B=~B. We are going to show that R.1 is the ring of K-
endomorphisms of M,. For this purpose we first attend to ¢,;R+1=¢, R-1=M,. Hence
ior any element m there exists an element s € R such that e¢,;r+1=m. Now we take an
e and set s, =egor+1ER-1. Then we have e 8 =eaty r+1=m. Clearly e,,s8,=0,
pk.

Let o be an arbitrary K-endomorphism of M, and e,;0 =my. Then we have s, such\
that e, 8, = my, €5, =0 for w+#k. Put s= é‘i ss€ER-1, then ¢yrs=ey+0, j=1,
Therefore c=s€ R-1.

Now we attempt to show the last asserfion of our theorem. As showing above

It follows that

e, WL
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we have
A, = Re;, = ) Beyey, = 2 Bey = X enennB= 2} enk,
[¥] i=1 i=1 =

Moreover we can show that R is the ring of K-endomorphisms of 4,.

§ 2. Weak quasi-primitive rings

In this section we weaken the conditions of quasi-primitive rings in [1]. For this
purpose we first introduce the concept of weak quasi-primitive rings which not only
contains the M-Arfinian rings but also holds the results which we have obfained in
[11.

All the definitions and terms, which are given in [1] and used in this section,
hold precisely their original meanings.

Let M be F-vector space and #' the set of invertible elements of 7. Clearly Fisa
multiplicative group.

Proposition 2.1. A sirictly cyclic R-module M is F-space if and only if thes et
S of all free elements of M satisfies the following conditions;

(1) there exists a set {w}r of S such that M= ‘EZP@Fui,

(ii) let wy, +--, u, be F-linearly indepedent elements, z €S, if z, uy, -+, U, are
F-nonlinearly indepedent, then z— Ef‘u‘, FER, i=1, -, m,

Proof Let {w}r be a basis, {H} its pairwise orthogonal projections, » € R, then
u= ") g4, By the assumption of our theorem we have g;eﬁ', %=1, +--, n. Olearly, for
any :31ement E,c{#,}, it is true that u H,=0 or u H,=g,u,, hence u K, €S. Thus the
condition (ii) of definition 1.8 in [1] is satisfied. Next we consider its condition
(iii). Indeed, if fE€F, fA =M, then there exists €S such that fuR=I. Hence
fu=|ﬁ1 gau, :EF. Since u€ES we know u= ‘2 Jitty, gy €F. Insomuch as ‘2 fogw =
> g‘u:, we gel fgi =gi, 9=1, +--, n. Hence f € P, therefore the sufficiency is proved.

: The proof of the necessity is already given in [1].

Definition 2.1. Denote S by the set of the free elements of M. S, a subset of S.
Then S, is called a set containing basic free elemenis 4f and only if S, satisfies the
Jollowing conditions:

(i) 8, contains a basis {u;} of M,

(ii) of @4, -+, @s are arbitrary finite number of F-linearly indepedent elements
and @y, ++-, @y, ¢ are F-nonlinearly independent elements, z €84, then

w=§fiwh f§eﬁ', 'I;=1, cee, M.
Denote M*={S,} by the class of all sels containing basic free elements. Then M"
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ig a partially ordered set under the set theorifical inclusion relation. Let S,cS;c---
c8.c--+ be an ascending chain of M* and §*= US,. We shall show S*€ M*. Indeed,
S8* contains a basis, let @4, +++, @, be F-linearly independent elements of §*, 2*€8* and
a*, @4, *++, @, be F-nonlinearly indepedent, then there exists S, which contains z*,
@4, **+, @5 Therefore w’=§‘] iy, g,EF, Hence §*€ M*. Applying Zorn’s lemma we
know that there exists a maximal element & in M*,

Definition 2.2. The above mazimal element 8 of M* is said to be a set of local
free elements. A strictly cyclic module M will be calledan F-quasispace, if and only of M
has a set of local free elements.

From now on we will use the symbol S, a set of local free elements, instead of S
in [1], the cet of all free elements of M. Specially, the sentence ‘W has a basis {w}’’
is understood by M = 3@ Fu, and {u} 8.

Proposition 2.2. Let M be F-quasispace. Then M has the following property:

(i) M has a F-basis,

(ii) let {w;} be a basis, u € ;§’, thenw B, =0 or vE, €S, where {E;} is patrwise orthogonal
projections of {w},

(iii) #f fFEF and an element u€ S with quS’, then fE R,

Proof (i) is clear. Now we attempt to show (ii). Since {u} =8, u€S, we have
u=$ g, g‘EF. Hence any element H; of {#;} has uF;=0 or u ;= g;u;. Now we can

show uE,Eﬁ_ Indeed g; € 7, hence g;u,Eﬁ. Denote §'=S U giu;, it cerfainly can assume
g,u,GES'. Let vy, +++, v, be F-linearly independent elements of 8, then Vg, **0, Uy, iU i8S
F-linearly independent if and only if vy, *+-, v,, %; is F-linearly independent. In fact,
if favgteoet favatfomu; =0, fi, fFEF and f+0, then fg;#0. Hence vy, =+, v,, u; are
F-non linearly independent. Conversely, if vy, 2s, =+, v,, %; are F-nonlinearly
independent, then it must be u;= X gw;, ;€ F. Hence gu;—3 gdw;, therefore vy, -+,
¥a, gsu; are F-nonlinearly independent. Now let @4, @, **«, 2, be elements of 8" and
F-linearly independent and let 2/ €8’ such that z', &y, *+, 2, are F-nonlinearly
independent. If @, = gu;, then just as mentioned above, it is clear that @y, -, z,_1,
belong to 8 and must be F-linearly independent as well as a', x4, *:+, @p—q, u; F=
linearly independent. Of course, we may assume o' €8, hence by the structure of S we
know

n—1

o' = ‘_Elgiw(+§nuj, ﬁ(eﬁ) 'i'=1: e, N
n—=1 A
Therefore z' = 2; g+ {gngi} g
=

as regired. Thus we assume that s, s, «, , all belong to § and o' = gsu;. Then
@4, **+, T, U; belong to S. From the F-linearly dependence of @4, -+, @,, &', it follows
that @y, -+, @,, u; are also F-linearly dependent, hence we obfain again
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uj =§ ﬁﬂu §s Eﬁ: o' = g =‘_$1 9i9@,  9:9:€ F.
This proves §' € M and §gs‘"'. But it contradicts the maximal property of S, hence it
must be gm,=uE,E:§.

Now we shall show (iii). By the Structure of S we know fu =¢§ Fon, 7 & P. Since
u€R, hence u=3 gu;, g;EF. Hence fu=2 Fg,uy= 3 fat;,. Insomuch as the property of
F-spasce we see fg;=f;, Hence f=f,g;* € F.

| Cbrdlla.ry. If u€S, then guE S for any non-zero element §€ 7.

Remark. The conditions of F-space defined in [1] are too strong, because they
demand every maximal element S" to be identified with S,

Definition 2.8. A ring R is called a weak quasi-primitive ring if and only if R
has a strictly cyclic and fdithful module M with the following conditions: (i) M is an
F-quasispace, (ii) of w,, -, w, are a finite mambierr of an F-basis of S and rER is a
given elevfment'su‘ch that w,r+0, wr=0, j =;£=‘1, then there exists an element 1€ R such
that w,t €8, u,t=0. : ‘

Example 1. Every M-Artfinian ring must be a weak quasi-primitive ring.

Proof Let R be an M-Artinian ring. Then by theorem 1.3 A, = Re,, is a strictly
cyclic and faithful left B-module and can be expressed as a direct sum A,= ;;_,:@eMK ’

where K =e,,Re,., {€ij}ayn-are matrix units. We also know that R is the ring of
K-endomorphisms of A,. Let § denote the set of all free elements of strictly cyclio
R-module A, = Re,, and M*= {S.} the class of all sets containing basic free elements.
Then it is clear that M‘_f‘#@. Since So= {e1,, €21, ***, €n} 18 a seb containing basic free
elements, hqnce M* must have an element § of local free elements. Hence 4, is a
K -quasispace, Since R is the ring of K -endomrphisms, hence all conditions of definition
2.3 are satisfied. Therefore R is a weak quasi-primitive ring.

Remark. In general, M-Artimian ring is not quasi-primitive ring, but if K isa
division ring, then every set of local free elements is the set of all free elements S. Hence
the weak quasi-primitive rings are precisely the quast-primitive rings, in this case the
usual semi-simple Artinian rings are & good example.

Example 2. Let M= @ Fu, be a (left) vector space over a division ring ¥, Q
the complete ring of linear transformations of M. We divide the basis {u}r into disjoint
subsets with the same cardinal number, namely {u},= &Jr'{u,} rer and {w} g, N {%;},,=
P, a%B, Oard. I,=Card. I, «, BEI". Therofore M= 21'@662! @ Fuy. {ly}acrv denote
the set with wl,=w;, for i€ 1,; ud,=0, for §& I,. Then i:Cis clea,r. that ll;=1.0.s where
8,5=0, a£B; 8,,=1,-a=pB. Let R=a§v®ﬂl¢, then R is a ring and we can choose an
arbitrary element I of {l,}r. If we set A=IR, then it can be shown

A- S @KL, 2.1)
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where K =1Rl=1Ql, B.€ A. In fact, by the structure of {l.}r we see
N=2QFu@NO=ZDFu, @ N (la), (2.2)
where Oard. I=Card. I,, N(I) = {mEM |ml=0}. Put uy=w; fori' €1,, 1€ 1, we have
M=D®Fv.®N,) = El](BFu,-(-DN (1). Hence there exist elements o,, 0o€Q such
I
that U0 a= Vs, ViOo=Uy, 7;61. It is ea,Slly seen that uila'alao'ol’:u‘, Q)Ja(rolo‘ala=’v¢, ”:EI.

Hence
loddood =1, logdlod.=Lla, (2.8)

From the above it follows Ql,=Qlo,l,, hence Rly= Rlo,l,. Put B,=lo.ls,, we have
A=3KQl,=3JIK1Ql,=3ZK Rl,= 3K B,=3 @ KB,. This proves (2.1). On the other
hand, if we set I=1I,, then f,=lo,l is an inverse element of fo=Ilo in K. If K
denotes the set of all invertible elements of K, then K is a multiplitical group. As
example 1 we can show thal there exists a seb S of local free elements such that
A=3@® Kp, is a weak K-space. Let @ be the ring of K-endomorphisms of 4, then
any-subring B of @ is a weak quasi-primitive ring as required, only if B is finite fold
transitive. We can now prove that R itself is also a weak quasi-primitive ring  In fact,
if we set o/ =1Q=1QlQ =3 K v;, then 2 must be the complete ring of endomorphisms
over K =1Ql of = as proved by [2]. But A=IRCiIQ=., hence if zy, -, z, are
K -linearly independent elements of A, then these are also K -linearly independent
elements of .o7. Therefore there exists an element w €Q such that wleS", zw=0 for

4=2, + m, hence w1w=‘2:1} Epi. Put e=li+---+1l,, we have zywe=2z:0ES and
zwe=0. But we ER=20I, Hence R is finite fold transitive in space A. This has
proved that R is a weak quasi-primitive ring.

From the above discussion it is easy to see that the weak quasi-primitive ring can
imply the same resulls as the quasi-primitive ring does, provided we use & intead of 8.
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LIE GROUPS AND SOME EVOLUTION EQUATIONS

Tiany Ceou L1 YIisHEN
(University of Science and Technology of China)

1. In 1978, in a lecture delivered in Peking, Prof. Chern, 8. S. pointed out that
some important evolution equations, such as KDV equation, Sine-Gordon equation
eto., might be considered as the structure equations of the 2-unimodular group SL
(2, R). Chern and Peng illustrated it further in the paper [1]. The purpose of our
paper is to establish the relation belween some evolution equations of higher order and
the multidimensional scabtering problems and the general linear groups GL(n, C), and
give them a geometric interpretation.

2. We assume that GL(n) is the real or complex general linear group, @ is an
element of QL(n), GL(n), is the fangent space at @, da is the tangent vector at @, then
w=da-a*
is a map from the tangent bundle of GL(n) to the tangent space at the unit element e,
that is the Lie algebra of GL(n), and is called the right invariant differential form.

The structure equation is

L4
dcu—-?[wl w].

The Lie algebra gl(n) consists of all n-matrices with the commutator.

If g4(», t) and ga(z, t) are any two elements of the gi(n), such that [gy, ga] #0,
then

w(x, t)=g1(z, t)do+ga(w, t)di

is the family of 2-dimensional subspaces in the gl(n), (da, dt) is the coordinates of the
subspace. The question is that does there exist a 2-dimensional surface a(#, #) in the
GL(n), its tangent plane at a(e, t) is w(=, t)+a(z, t) Evidently, this is to solve the
equation da=w-a.

From the relative theory, a necessary and suflicient condition that the equation be
solvable is that the w satisfies the structure equation

e Tl S
dﬁ)——?[(a’ Cl)],
{hat is (git—gg,)da;/\dt= o [g]_, gg] dw /\dt,
ie. 92— g1u=[91, ga].

Indeed, this is the integrability condition of the equation de=a-a.

Manuseript received Dee. 25, 1979.
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8. Now we shall illustrate that the equalions

92z — g1t = [g1, g2l
are some evolution equations, if g; and g, are selected suitably.
i) If p is a constant

C=2u(z, t)+4p°,

g1=< p u(z, t))
g 4

—-Pp
1 i
—PG—E C, _ch_"iou"uo
ga= 1 s
c 0+5 Ca
il
_ng_'é‘ozz
then Jar— =

—uf—poz:_% Ozzz—uzo—uo:
0P

1
p0¢+70"

_ —pa.c_“;;ozz —21720:—‘?0:4'“0;
[gl: 92] 2 ‘

C

1 >
I Zﬂt + _2_028
the structure equations are reduced to the KDV equation

g+ Bttty -+ gy =0,
ii) If p is a constant

91= s
—u

—-p
( —4p® —2pu? — Uy — 2pu, — Ap’u— 2u?
2= Uy — 20U, — 4pu — 203 4p* 4 2pu® :
then the structure equations are reduced to the MKDV equation
Uy 6UUy + Upge = 0,
iii) If p is a constant
1
e g Ua
91= & l 7 i »
B
1 e
—— Ccos U ——sin u
_| ¥ 4p
9a= 1

: i, ;
—giny ———cosu
4p 4p
then the structure equations are reduced to the Sine-Gordon equation

Ugt = sin u,
These were illustrated in Chern’s lecture,



ENG. ISSUE LIE GROUPS AND SOME EVOLUTION EQUATIONS 13

iv) If A is a constant

(5 2 wlou)

then the structure equations are reduced to the general evolution equations which are
considered by AKNS in paper [2]
¢C—yB=A4,, ¢:—24¢=DB,+2iAB, +24y=C,—2i\0O,

As the traces of g; and ga are both equal to zero, we can consider in the
2-unimodular grodp. These evolution equations may be considered as the integrability
conditions of the equation da=w-a. Thus, there is a one to one correspondence bet-
ween the solution of the equation and the infegral ma.xﬁfolds of da=w-a through the
unit element e.

4. In paper [3], there is a discussion of higher order evolution equations and the
multidimensional scattering problems. For these equations, the number of their
independent variable and unknown function are increased. Now we establish the
relation between these equations and the structure equations of the general linear
group.

i) If pis a constant

91(-'”; t)='&P ., +(Nil)n

91
9a(z, 1) =p @y,

qn
where di(i=1, 2, :++, n) are constant, and d;#d;(i#j), q(i=1, 2, -, n) are
mdependent of z, ﬁu=¢luN ij :

iz ={ ﬁﬁ’ i.ﬁj’
0, t=j,
then 9= (ai;Ni,2), ga= (Ny,e),
[g1, g2l =[N, N]= (;(aki—aik) NNy,
thus, these structure equations are reduced to evolution equations
N‘,,,=ai,-N”,,+§(w,k~a,,,)N‘,,N,,,, 9, j=1, 2, -, n,
Particularly, when n=38, Ny=0, Ny=o0-Nj;, that is

0 Niq Ny, 0 A A
N= 0'31N;2 0 Ngs = 0'91A‘ 0 A 'y

031Ni3 0N 0 05 A" 034" O
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where gy = —0g1°039, also let a;a=1vy, @13="s, @o3=7v;3, then we obtain three wave
equations

Ay =141, +039(va—v35) 4243,

Age =949+ (v1—v5) 4145,

Age =03 A5,+ 001 (01— vs) ATAs,

ii) In order to discuss those equations which have independent variables @, y and
t, we must consider the family of 3-dimensional planes in the gl(n). We assume
91(z, y, 1) =ipD+N+8, ga(z, y, 1)=8, gs(w, y, 1) =Q+0O8,
where p is a constant, B, C, D, N, § and Q all are n-matrices, B;;, Oy and D, all are
constants, and ¢4, ga, ¢s are not coplanar, then
(@, y, t) = g1dw+ gody+ gs dit

is the family of 3-dimensional planes in gl(n). In this case, the structure equation

do= 4 [, @]
is reduced to
G1— 93 =[5, 911, 92— G1y=[9g1, gal, Gsy—gar=1[ga, 95],
Ny+BS,—Q,— 08, = [Q, N1+ip[Q, D]+ (@, BS]+ip[08, D]
+ [CS, N]+[CS, BS],
S.—N,—BS,=ip[D, 81+ [N, 81+ [BS, 8],
Q—08,—8,=[8, Q1+[8, 08].
we make O X @+ BX @), then
CS8,—BS:+ [B, C18,+BQ,—ON,=ipC[D, S]1+C[N, 8]
+O[BS, S1+B[S, Q] +B[S, CS]
adding (D again, we obtain
—[B, 0182—[B, C1S8,+ (sp[C, D] +[C, N]1+[Q, B])S
+[Q, N]+ép[Q, D] =N;—Q,+BQ,—ON,,

[B, €] =0,
ip[C, D] +[C, N1+[Q, B] =0,

ip[Q, D1+ [Q, N]+Q,—BQ,+ON,=N,,
then equation @ holds for any §. Therefore, if B, C, D, Q and N satisfy &), ®, @,
and S satisfies @, @ and @), then it holds for the integrability condition of the
equation da=w-a, that is the structure equation. So there is unique integral manifold
through the unit e. In particular, if

B=(By) = (bdy), C=(0y)=_(cdy),
D= (D&J) oy (d;&j), Ny=0,

where b;, ¢; and d; all are constants, then we have [B, C] =0, i.e., ® is identity, but
is reduced to

i.e.

®eo

If

Qe e ®



