PEARSON

|
Bl 5 Sk b

Javaig

(%) Mark Allen Weiss x

=TT
1ot |
bl
o>

{%?Elt.hj(—?—
% MARK ALLEN WEISS
X
i DATA STRUCT!
= . AND o
FE ALGORITHM ANALYS

'N A\/A

ML T b ORR #

China Machine Press

L A A]

Javaig s ik
(R - %3KR)

(9/ ala S Lrwclures and x//?// 1T h
%/////// w9 . Jfavd (i Edition)

DATA STRUCTURES

ALGORITHM ANALYSiS

i[ﬁl!l# mEs

/mrmmrmmmunmuummmmmm |

k 21255764

Mark Allen Weiss
(%) HEFBEERERKE &

e

China Machine Press

BHEMRAE (CIP) #iiRE

BARLM SFESHT - Java iBS IR (FSUR - B3 MR) 7 (3£) i (Weiss, M. A.) #F . —Jb5t : #l
BRI AL, 2013.1

(B FRRAE)

F4JF3C: Data Structures and Algorithm Analysis in Java, Third Edition

ISBN 978-7-111-41236-6

L% IL B 1L @ BiEgi - 3t — 35 @ HEMT - BM - XX B JAVAES - B
Wit — #Hobr - ¥ 1v. @ TP311.12 @ TP312

rhE iR AR A58 CIP BdERza (2013) 28 012558 5

KA « @R
IR A7 A AR
AP EAmE bR TR KRR F ST

AHENEIES: BF: 01-2013-0213

Original edition, entitled: Data Structures and Algorithm Analysis in Java, 3E, 9780132576277 by
Mark Allen Weiss, published by Pearson Education, Inc, publishing as Pearson, Copyright © 2012, 2007,
1999.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage retrieval
system, without permission from Pearson Education, Inc.

English reprint edition published by PEARSON EDUCATION ASIA LTD., and CHINA MACHINE
PRESS, Copyright © 2013.

This edition is manufactured in t};xe‘l’mp!eis Repubhc of C-hma, aqd is authorized for sale and distribution
in the People’s Republic of China excfusl%efy (‘d&c&t Talwan, Hong Keng SAR and Macau SAR).

ARSI i Pearson Edui:atioﬁ Asia Ltd ﬁ*ﬂ%ﬂ%ﬁ}ﬁﬁ:@?tﬂ iR ALEHMRE BT
o, AEMEMARE WD RARAEL
AR e AR AEFNE BN (X@'Eﬁh[ﬂﬁpﬁ‘ rﬁﬂﬂ%‘ﬂ HUZWFFE!L‘?%W,E) @ﬁ%kﬂ‘a
A5G Pearson Education (35458 HIREER) BOERI MRS, TThrssEARHE.

BURE TR (LR PR BB EERE225 BBZES 100037)
FefTgutE: RIRE

b s s A R A B) B

201342 F 851 AR S 1R EP

170mm x 242mm » 39.5E15k

FrfEPE: ISBN 978-7-111-41236-6

SEMT: 79.007C

WA, WA ER, BR, LR, bARLTHRAMR
EMHAL: (010) 88378991 88361066 HABHKL: (010) 88379604
Wbk (010) 68326294 88379649 68995259 kA 134 : hzjsj@hzbook.com

HARERYE

XEELURE, FERRKAFHARBMMES R 2 ARG, ElhEREA AR
FHIEANGRIG T 2WHER RS hERXHRESE, EEEERBEARRRIA TS
i ARKEN, RAGREE, ERLICRERS, EEALR 5B E bRk %4
&, HREHLZEFH R 2 R LA RN SR BCR R AT, Bk ™ A2 i1 FHE
FE, AOUERITHIRATERE, BHR TERMEE, BEFEAANE, XAR%EN
e, HAEIA SR A I o8 .

4, E2KRERBIARENHEZ T, REMTHEI™ LA RRIE, ELALAOE
KHZEY), X BEALEE R AR RIS, WREPR, G kB iR R %
Akl LR AR ERE, ERERGBEAKREMNEZREMIART, EEFEREERELT
R R RAL T ERREMR RIZBEM AT ZEGEE 2L, Fit, shE—#t
EAMES TH AL EA B3 B T RALEE & R BB R, it 554
B, BIREIEMHR —RAFHLHRZE,

LB ol i RdE e B A R R EIRE “HIREAEFTRS . B 1998 £H- 4k, i
sk TR RURAE ik, BIFESMEFBEM L. 2 2 EAMSE S, i) Pearson,
McGraw-Hill, Elsevier, MIT, John Wiley & Sons, Cengage % fi: 5t 2 4 H hk & & &t 51
TRHFMAEXRR, MMIBLA M5 & Fh bt & B %E HH Andrew S. Tanenbaum, Bjarne
Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft,
Jeffrey D. Ullman, Abraham Silberschatz, William Stallings, Donald E. Knuth, John L.
Hennessy, Larry L. Peterson % KJifi 4 KA —#L2MAIESR, UL “THEHBEAS 48R
Wi, HERES. IR RER. KEALEMEE, WEADR TXENBR GG,

“UHRALEHE AR AR TR TENMEERR D), ENRERA R T
PR S, SRS E A T RIS T IR AR A Y e A
s fErp ERERE, AREERALBHPELIERF. €4, “UHEILFZAE o2tk T
I E A Rl X EEREELEIRE PO T RAFR OB, 2 EmECR A EXEM S
ZRE. HRPHR “SMFERRE" 1EA Mk R kR £ S OE # MR B R .

BURHITER . BABH . —RAIFER. MHROER, HAafgmdE, XerERER
MAEBA T REARIE, BEE HRILEE: SHAR T L2 B R A 52 B Hob sk i
BRI, B Rt B MBS A9 KR B R R 5 A — AR BE, Bl H AR
RERE, M BRERERBITERX LR B EERE), 70 7NN EIHf%
FORATH TR R RS THRIE, BAEKRGHENT:

£ ZFM 4. www.hzbook.com
87l . hzjsj@hzbook.com
BEFREIE. (010) 88379604

BRI kX FTHREGTAGM]S
ERBI4RHES . 100037 AFHBBA B BRFP S

To the love of my life, Jill.

-

—

(e

7 o' o 8 & o S
S o ol B R TS

o

b \
. W,
] %l l X+ "
: i

:-#m‘

 PREFACE

Purpose/Goals

This new Java edition describes data structures, methods of organizing large amounts of
data, and algorithm analysis, the estimation of the running time of algorithms. As computers
become faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency, since
inefficiencies in programs become most obvious when input sizes are large. By analyzing
an algorithm before it is actually coded, students can decide if a particular solution will be
feasible. For example, in this text students look at specific problems and see how careful
implementations can reduce the time constraint for large amounts of data from centuries
to less than a second. Therefore, no algorithm or data structure is presented without an
explanation of its running time. In some cases, minute details that affect the running time
of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency.

This book is suitable for either an advanced data structures (CS7) course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of intermedi-
ate programming, including such topics as object-based programming and recursion, and
some background in discrete math.

Summary of the Most Significant Changes in the Third Edition

The third edition incorporates numerous bug fixes, and many parts of the book have
undergone revision to increase the clarity of presentation. In addition,

¢ Chapter 4 includes implementation of the AVL tree deletion algorithm—a topic often
requested by readers.

* Chapter 5 has been extensively revised and enlarged and now contains material on two
newer algorithms: cuckoo hashing and hopscotch hashing. Additionally, a new section
on universal hashing has been added.

* Chapter 7 now contains material on radix sort, and a new section on lower bound
proofs has been added.

vi Preface

-« Chapter 8 uses the new union/find analysis by Seidel and Sharir, and shows the
O(Ma(M, N)) bound instead of the weaker O(Mlog* N) bound in prior editions.

* Chapter 12 adds material on suffix trees and suffix arrays, including the linear-time
suffix array construction algorithm by Karkkainen and Sanders (with implementation).
The sections covering deterministic skip lists and AA-trees have been removed.

* Throughout the text, the code has been updated to use the diamond operator from
Java 7.

Approach

Although the material in this text is largely language independent, programming requires
the use of a specific language. As the title implies, we have chosen Java for this book. '

Java is often examined in comparison with C++. Java offers many benefits, and pro-
grammers often view Java as a safer, more portable, and easier-to-use language than C++.
As such, it makes a fine core language for discussing and implementing fundamental data
structures. Other important parts of Java, such as threads and its GUI, although important,
are not needed in this text and thus are not discussed.

Complete versions of the data structures, in both Java and C++, are available on
the Internet. We use similar coding conventions to make the parallels between the two
languages more evident.

Overview

Chapter 1 contains review material on discrete math and récursion. I believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
presents material that serves as a review of inheritance in Java. Included is a discussion of
Java generics.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analy51s and
its major weaknesses. Many examples are provided, including an in-depth explanation of
logarithmic running time. Simple recursive programs are analyzed by intuitively converting
them into iterative programs. More complicated divide-and-conquer programs are intro-
duced, but some of the analysis (solving recurrence relations) is implicitly delayed until
Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. This chapter has been significantly revised
from prior editions. It now includes a discussion of the Collections API Arraylist
and LinkedList classes, and it provides implementations of a 51gn1ﬁcant subset of the
collections API ArrayList and LinkedList classes.

Chapter 4 covers trees, with an emphasis on search trees, including external search
trees (B-trees). The UNIX file system and expression trees are used as examples. AVL trees
and splay trees are introduced. More careful treatment of search tree implementation details
is found in Chapter 12. Additional coverage of trees, such as file compression and game
trees, is deferred until Chapter 10. Data structures for an external medium are considered
as the final topic in several chapters. New to this edition is a discussion of the Collections
API TreeSet and TreeMap classes, including a significant example that illustrates the use of
three separate maps to efficiently solve a problem. ;

Preface vii

Chapter 5 discusses hash tables, including the classic algorithms such as sepa-
rate chaining and linear and quadratic probing, as well as several newer algorithms,
namely cuckoo hashing and hopscotch hashing. Universal hashing is also discussed, and
extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chapter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four
algorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. New to
this edition is radix sort and lower bound proofs for selection-related problems. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. The anal-
ysis is new. This is a short and specific chapter that can be skipped if Kruskal’s algorithm
is not discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice, but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all the standard algorithms are
presented along with appropriate data structures, pseudocode, and analysis of ‘running
time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the student’s appreciation of an example algorithm is not obscured by
implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 and 6
and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the suffix tree and array, the k-d tree, and
the pairing heap. This chapter departs from the rest of the text by providing complete and
careful implementations for the search trees and pairing heap. The material is structured so
that the instructor can integrate sections into discussions from other chapters. For exam-
ple, the top-down red-black tree in Chapter 12 can be discussed along with AVL trees
(in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover Chapters 7-11. The advanced data structures analyzed in Chapter 11 can easily
be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9 is
far too brief to be used in such a course. You might find it useful to use an additional work
on NP-completeness to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material is pre-
sented. The last exercises may address the chapter as a whole rather than a specific section.
Difficult exercises are marked with an asterisk, and more challenging exercises have two
asterisks.

viii Preface

References

References are placed at the end of each chapter. Generally the references either are his-
torical, representing the original source of the material, or they represent extensions and
improvements to the results given in the text. Some references represent solutions to
exercises.

Supplements

The following supplements are available to all readers at
www.pearsonhighered.com/cssupport:

* Source code for example programs

In addition, the following material is available only to qualified instructors at Pearson’s
Instructor Resource Center (www.pearsonhighered.com/irc). Visit the IRC or contact your
campus Pearson representative for access.

* Solutions to selected exercises
* Figures from the book

Acknowledgments

Many, many people have helped me in the preparation of books in'this series. Some are
listed in other versions of the book; thanks to all.

As usual, the writing process was made easier by the professionals at Pearson. I'd like to
thank my editor, Michael Hirsch, and production editor, Pat Brown. I'd also like to thank
Abinaya Rajendran and her team in Integra Software Services for their fine work putting
the final pieces together. My wonderful wife Jill deserves extra special thanks for everything
she does.

Finally, I'd like to thank the numerous readers who have sent e-mail messages and
pointed out errors or inconsistencies in earlier versions. My World Wide Web page
www.cis.fiu.edu/~weiss contains updated source code (in Java and C++), an errata list,
and a link to submit bug reports.

M.AW.
Miami, Florida

ONTENTS

Preface v

Chapter 1 Introduction 1
1.1 What’s the Book About? 1
1.2 Mathematics Review 2
1.2.1 Exponents 3
1.2.2 Logarithms 3
L2213 » Seniest 4
1.2.4 Modular Arithmetic 5
12.5 ThePWord 6
1.3 A Brief Introduction to Recursion 8
1.4 Implementing Generic Components Pre-Java 5 12
1.4.1 Using Object for Genericity 13
1.42 Wrappers for Primitive Types 14
1.4.3 Using Interface Types for Genericity 14
1.4.4 Compatibility of Array Types 16
1.5 Implementing Generic Components Using Java 5 Generics 16
1.5.1 Simple Generic Classes and Interfaces 17
1.5.2 Autoboxing/Unboxing 18
1.5.3 The Diamond Operator 18
1.54 Wildcards with Bounds 19
1.5.5 Generic Static Methods 20
1.5.6 Type Bounds 21
1:5:7vuType Erasure 22
1.5.8 Restrictions on Generics 23

16

Contents

Function ‘Objects 24
Summary 26

Exercises 26
References 28

Chapter 2 Algorithm Analysis

2.
22
23
23

Mathematical Background 29

Model 32
What to Analyze 33
Running Time Calculations 35

2.4.1 A Simple Example 36

242 General Rules 36

243 Solutions for the Maximum Subsequence Sum Problem 39
244 Logarithms in the Running Time . 45

245 AGrainof Salt 49

Summary 49

Exercises 50

References 55

Chapter 3 Lists, Stacks, and Queues

3.
3:2

33

34

35
3.6

Abstract Data Types (ADTs) 57

The List ADT 58 '

3.2.1 Simple Array Implementation of Lists 58

3.2.2 Simple Linked Lists 59

Lists in the Java Collections API 61

3.3.1 Collection Interface 61

3.3.2 Iterators 61

3.3.3 The List Interface, ArrayList, and LinkedList 63
3.3.4 Example: Using remove on a LinkedList 65

3.3.5 ListIterators 67

Implementation of ArrayList 67

34.1 The Basic Class 68 ‘

3.4.2 The Iterator and Java Nested and Inner Classes 71
Implementation of LinkedList 75

The Stack ADT 82

3.6.1 Stack Model 82

29

57

3.7

3.6.2 Implementation of Stacks 83

3.6.3 Applications 84

The Queue ADT 92

3.7.1 Queue Model 92 :
3.7.2 Array Implementation of Queues 92
3.7.3 Applications of Queues 95

Summary 96

Exercises 96

Chapter 4 Trees

4.1
4.2

43

44
45

4.6
F7
4.8

Preliminaries 101

4.1.1 Implementation of Trees 102

4.1.2 Tree Traversals with an Application 103
Binary Trees 107

4.2.1 Implementation 108

4.2.2 An Example: Expression Trees 109

The Search Tree ADT—Binary Search Trees 112
43.1 contains 113

4.3.2 findMin and findMax 115

433 insert 116

434 remove 118

4.3.5 Average-Case Analysis) 120, . 053 wiiqayisss
AVL Trees 123 = T
4.4.1 Single Rotation 125

4.4.2 Double Rotation 128

Splay Trees 537

4.5.1 A Simple Idea (That Does Not Work) 137
4.5.2 Splaying 139

Tree Traversals (Revisited) 145

B-Trees 147

Sets and Maps in the Standard Library 152

481 -Sets 152 :

4.8.2 Maps 153

4.8.3 Implementation of TreeSet and TreeMap 153
4.8.4 An Example That Uses Several Maps 154
Summary 160 ' 2
Exercises 160

References 167

101

SIGENS

xii Contents

Chapter 5 Hashing

5.1 General Idea 171

5.2 Hash Function 172

5.3 Separate Chaining 174

5.4 Hash Tables Without Linked Lists 179
5.4.1 Linear Probing 179 :
5.4.2 Quadratic Probing 181
5.4.3 Double Hashing 183

5.5 Rehashing 188

5.6 Hash Tables in the Standard Library 189

5.7 Hash Tables with Worst-Case O(1) Access
5.7.1 Perfect Hashing 193
5.7.2 Cuckoo Hashing 195
5.7.3 Hopscotch Hashing 205

5.8 Universal Hashing 211

5.9 Extendible Hashing 214
Summary 217
Exercises 218
References 222

Chapter 6 Priority Queues (Heaps)

6.1 Model 225

6.2 Simple Implementations 226

6.3 Binary Heap 226
6.3.1 Structure Property 227
6.3.2 Heap-Order Property 229
6.3.3 Basic Heap Operations 229
6.3.4 Other Heap Operations 234

6.4 Applications of Priority Queues 238
6.4.1 The Selection Problem 238
6.4.2 Event Simulation 239

6.5 d-Heaps 240

6.6 Leftist Heaps 241
6.6.1 Leftist Heap Property 241
6.6.2 Leftist Heap Operations 242

6.7 Skew Heaps 249

17

225

Contents xiii

6.8 Binomial Queues 252
6.8.1 Binomial Queue Structure 252
6.8.2 Binomial Queue Operations 253
6.8.3 Implementation of Binomial Queues 256
6.9 Priority Queues in the Standard Library 261
Summary 261
Exercises 263
References 267
Chapter 7 Sorting 271
7.1 Preliminaries 271
7.2 Insertion Sort 272
7.2.1 The Algorithm 272
7.2.2 Analysis of Insertion Sort 272
7.3 A Lower Bound for Simple Sorting Algorithms 273
7.4 Shellsort 274
7.4.1 Worst-Case Analysis of Shellsort 276
7.5 Heapsort 278
7.5.1 Analysis of Heapsort 279
7.6 Mergesort 282
7.6.1 Analysis of Mergesort 284
7.7 Quicksort 288
7.7.1 Picking the Pivot 290
7.7.2 Partitioning Strategy 292
7.7.3 Small Arrays 294
7.7.4 Actual Quicksort Routines 294
7.7.5 Analysis of Quicksort 297
7.7.6 A Linear-Expected-Time Algorithm for Selection 300
7.8 A General Lower Bound for Sorting 302
7.8.1 Decision Trees 302
7.9 Decision-Tree Lower Bounds for Selection Problems 304
7.10 Adversary Lower Bounds 307
7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 310
7.12 External Sorting 315

7.12.1 Why We Need New Algorithms 316
7.12.2 Model for External Sorting 316
7.12.3 The Simple Algorithm 316

xiv

Contents

7.12.4 Multiway Merge 317
7.12.5 Polyphase Merge 318
7.12.6 Replacement Selection 319
Summary 321

Exercises 321

References 327

Chapter 8 The Disjoint Set Class

8.1
82
83
8.4
85
8.6

8.7

Equivalence Relations 331

The Dynamic Equivalence Problem 332

Basic Data Structure 333

Smart Union Algorithms 337

Path Compression 340

Worst Case for Union-by-Rank and Path Compression
8.6.1 Slowly Growing Functions 342

8.6.2 An Analysis By Recursive Decomposition 343
8.6.3 An O(Mlog*N)Bound = 350

864 AnO(Ma(M, N))Bound 350

An Application 352

Summary 355

Exercises. 355

References 357

Chapter 9 Graph Algorithms

9.1

9.2
S

9.4

Definitions 359

9.1.1 Representation of Graphs 360
Topological Sort 362..

Shortest-Path Algorithms 366

9.3.1 Unweighted Shortest Paths 367

9.3.2 ' Dijkstras:Algorithm 372

9.3.3 Graphs with Negative Edge Costs 380
9.3.4 Acyclic Graphs = 380

9.3.5 All-Pairs Shortest Path 384

9.3.6 Shortest-Path Example 384

Network Flow Problems 386

9.4.1 A Simple Maximum-Flow Algorithm 388

Sk

331

359

Contents - XV

9.5 Minimum Spanning Tree 393
9.5.1 Prim’s Algorithm = 394
9.5.2 Kruskals Algorithm 397
9.6 Applications of Depth-First Search 399
9.6.1 Undirected Graphs 400
9.6.2 Biconnectivity 402
9.6.3 Euler Circuits 405
9.6.4 Directed Graphs 409
9.6.5 Finding Strong Components 411
9.7 Introduction to NP-Completeness 412
9.7.1 . Easyvs.Hard 413
9.7.2. The Class NP . 414
9.7.3 NP-Complete Problems 415
Summary 417
Exercises 417
References 425

Chapter 10 Algorithm Design
Techniques 429
10.1 Greedy Algorithms 429
10.1.1 A Simple Scheduling Problem 430
10.1.2 Huffman Codes 433
10.1.3 Approximate Bin Packing 439
10.2 Divide and Conquer ., .:448 - - €3 i
10.2.1 Running Time of Dmde and- Conquer Algomhms 449
10.2.2 Closest-Points Problem 451
10.2.3 The Selection Problem 455
10.2.4 Theoretical Improvements for Arithmetic Problems 458
10.3 Dynamic Programming 462
10.3.1 Using a Table Instead of Recursion 463
10.3.2 Ordering Matrix Multiplications 466
10.3.3 Optimal Binary Search Tree 469
10.3.4 All-Pairs Shortest Path 472
10.4 Randomized Algorithms 474
10.4.1 Random Number Generators 476
10.4.2" Skip Lists 480
10.4.3 Primality Testing 483

xvi Contents

10.5 Backtracking Algorithms 486
10.5.1 The Turnpike Reconstruction Problem 487
10.5.2 Games 490
Summary 499
Exercises 499
References 508

Chapter 11 Amortized Analysis 513

11.1 An Unrelated Puzzle 514

11.2 Binomial Queues 514

11.3 Skew Heaps 519

11.4 Fibonacci Heaps 522
11.4.1 Cutting Nodes in Leftist Heaps 522
11.4.2 Lazy Merging for Binomial Queues 525
11.4.3 The Fibonacci Heap Operations 528
11.4.4 Proof of the Time Bound 529

11.5 Splay Trees 531 '
Summary 536
Exercises 536
References 538

Chapter 12 Advanced Data Structures
and Implementation 541
12.1 Top-Down Splay Trees 541
12.2 Red-Black Trees 549
12.2.1 Bottom-Up Insertion 549
12.2.2 Top-Down Red-Black Trees 551
12.2.3 Top-Down Deletion 556
12.3 Treaps 558
12.4 Suffix Arrays and Suffix Trees 560
12.4.1 Suffix Arrays 561
12.4.2 Suffix Trees 564

12.4.3 Linear-Time Construction of Suffix Arrays and Suffix Trees 567
12.5 k-d Trees 578

