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RECENT APPLICATIONS OF
SOME OLD WORK OF
LAGUERRE

EMIL GROSSWALDY

1. Introduction. Edmond Laguerre (1834 — 1886) is
rightly considered as one of the foremost mathematicians
of his time. He was a forerunner of Hadamard in the
study of entire functions; the “Laguerre polynomials” are
an important tool in several branches of pure and of
applied mathematics, and Laguerre is also often quoted
for his contributions to geometry (“theory of cycles”),
algebraic equations, and continued fractions.

Nevertheless, he rates only four half-lines in the
1972 edition of the Petit Larousse [15], and his name

is not even mentioned in such excellent surveys as
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[8], [18], [19], and [14]. To my surprise, not
only does Laguerre not rate an entry, but he is not even
mentioned under some other heading, in the
Encyclopaedia Britannica (at least not in its 1954
edition) [5]. There is one brief mention of Laguerre
in the four-volume World of Mathematics [12] in
connection with the solution of a classical problem of
tangent circles by the use of his “theory of cycles” and
another brief mention in [2] in connection with
three-dimensional analytical geometry.

Among Laguerre’s numerous contributions to
mathematics, is a theory of importance both to the
theory of equations and to the study of the zeros of
polynomials. It would be wrong to say that the theory is
forgotten. In fact, G. Szego [20] gives a sketchy proof
of the main theorem, in view of some applications
similar to those in the present paper; and a few years
ago, Docev used it to obtain an excellent bound for the
absolute value of the zeros of Bessel Polynomials (see
[4]). This theory, however, is not readily found in
Laguerre’s own papers. In order to obtain its more
powerful results, the reader must combine several of
Laguerre’s papers (often very condensed notes
published in the Comptes Rendus of the French
Academy of Sciences) , fortur.at~ly now collected in his
two-volume Oeuvres [ 10]. Several very readable proofs
of Laguerre’s theorems can be found in the excellent

monograph [11] by M. Marden. These are based
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mainly on considerations from mechanics (spherical
and plane fields of forces, points of equilibrium,
centers of mass, etc. ). There exists also, however, a
masterly presentation (quoted in [11]) of this
material,, together with some of its applications, in the
unsurpassed work, Aufgaben und Lehrsiitze aus der
Analysis by Pélya and Szegs [16, vol. 2, Part 5,
Chapter 2, Problems 101 - 120]. The reader who is
willing to spend the time and effort needed to solve
those 20 problems, and in this way to rediscover
Laguerre’s theory for himself under Polya and Szego’s
guidance, will profit greatly. His task has been made
easier by the recent English translation [ 16a]. Such a
reader is to be encouraged in his endeavor and need not
continue to read the present article. Indeed, my
purpose here is to make a leisurely, coherent
presentation of Laguerre’s theory, by following Pélya
and Szego’s treatment to large extent, for the benefit of
those who choose a less arduous way to become
acquainted with this beautiful work.  Several
applications, some of them recent, follow the
theoretical part.

2. The center of mass. Let us consider n complex
numbers z,, z,, ., z,, represent them in the
complex plane, and assume that at each of these points
there is a unit mass. Then the “center of mass” of the

n unit masses is given by the formula

1
{:;(zl +2z, +... +2,)
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It is an elementary exercise to verify that this definition
has intrinsic meaning, i.e. , that the position of  with
respect to the given points does not depend on the
location of the origin and the orientation of the axes.
Indeed, if each z(j =1, 2, ..., n) is subject to the
same translation, say z; —z’, =z, + a, then also { —
®

{' =¢ + a. Similarly for a rotation, if z; — z', = ze*,
then also ¢ — ¢’ = ze'®. It also is clear that if a <
Re z; < b, then also

a<Rel<b (1)
In fact, unless Re z; = @ or Re z; = b for all z;(which
then would be collinear) , one has strict inequalities in
(1).

Let us now consider C, the smallest convex
polygon that contains all the points z;. By a rotation we
may bring any side of C, say (see Fig.1) z,z,, into a
vertical position, so that Re z; < Re z, =Re z; =b, say.
Then, by (1), also Re { < b, with strict inequality,
unless Re z; = b for all j =1, 2,..., n. We may say
that the line z,, z; determines two half-planes, of which
one does not contain any points z;; then { belongs to
the other half-plane. The same reasoning holds of
course, for all sides of C, so that we conclude that ¢
itself belongs to the intersection of those half-planes,
i.e., to C. In fact, the strict inequalities in (1) show
that £ belongs to the interior of C, unless all z’s are
collinear (in which case no interior exists).

3. The generalized center of mass. We now
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Fig. 1

proceed to generalize the concept of a “center of
mass. ” The point (or complex number) ¢ determined
in section 2 will be said to be the “center of mass with
respect to the point at infinity.” When we want to
stress this fact, we shall write /_. In other words, we

define
1 n
{:{m =_sz (2)
n 4

We now want to define a center of mass  of z,, z,,... ,
z,, with respect to an arbitrary point z, that we shall
call (for want of a better name) the “pole”. We do
this by reducing the new problem to the old one. We
first map the pole z, into the point at infinity by some

appropriate linear fractional transformation, say

+b (3)

z—z' =
z — z,

Under (3), each z; is mapped into
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a
7' = +b
z, -z,

while z, — 2z’ = . Next, we find the center of mass
(' ={'. of the (2;)’s with the pole z'; = o by (2),

1. €.

Finally, we map the whole configuration back, by the
transformation inverse to (3). Under this inverse

transformation z'j =z,

z'y = —z;and ¢’ is mapped
into some point £, , which we define as the center of
mass of the points z;(j = 1,... ,n) with respect to the
pole z,.

While all the operations described are well
defined, the question arises; does such a construction
have any geometric meaning? Does /, depend, as its
zo}?

Indeed, we have used (3) in our construction, and

" name implies, only on the set {z,, z,,..., z

n

(3) depends on the two arbitrary parameters a and b.
Will not £, also depend on our arbitrary choice of these

parameters? Fortunately, [, turns out to have an

intrinsic meaning and is independent of the particular

transformation (3) selected. Indeed, by (2) and (3)

AT ey

j=1%; — %

a 1

n oz -2

On the other hand ” is the image of £, under (3), so
that
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a
LO — 2
By equating the two expressions of ¢’ we obtain
1 & 1
gq, — 2 Zi — 2

J=1 %)
or, solving for £,

+b

¢ =

1
n

Lo=m+n> 1] (4)

J=1 % T %o

This explicit formula shows that /, is indeed
independent of a and b, as claimed.

4. A separation theorem. We consider now some
properties of £, . We recall that in section 2 { ={, was
a point of C. We may think of C as follows: Consider
all pairs of points z;, z,(1 <j, k < n) and the straight
line determined by them. This divides the plane into
two half-planes. Sometimes both half-planes contain
some of the given points (e.g., for z;, z, in Fig. 1),
but sometimes only one contains points (as in our first
example, z,z,, or, say, z;, zs in Fig. 1). In the latter
case, delete the half-plane without points (for z,, z

1

one deletes the “southwesterly” half-plane below the
infinite straight line through 2z, and 2z;). The
intersection of all remaining half-planes is precisely C.
Finally, we observe that the straight line through z;, z,
may also be considered as a generalized circle through

z;, z, and the point at infinity (the “pole” in that
iy Bk p y p
construction).

Exactly the same considerations apply to z',,
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2’5, .., 2, with " = ¢, which lies inside the

n

(ordinary) polygon C', the smallest convex polygon

“

that contains all the (z';)’s, while 2’ = w , the “pole”
lies outside. When we map back, under the function
inverse to (3), the straight lines that form the sides of
C', say z';, z';, are transformed into circles through
the pole z,(the image of z'; = © ) and the points z,, z,.
The image of C’ is, therefore, a curvilinear polygon,
that we may also construct directly as follows: we take
the points z,, z,,..., 2z, two by two and construct a
circle through the couple z;, z,(1 <j, k < n) and the
pole z,. This circle divides the complex plane into two
circular domains (its “inside” and its “outside”). It
may happen that one of these two (open) domains
contains no other points z,(j = 1,... ,n). In this case
we “delete” it mentally. The intersection of the
remaining circular domains is a closed curvilinear
polygon, say C = C, , the inverse image of C’ under
(3). Then C, divides the complex plane into two
regions (Jordan curve theorem). In one of them we
find z,, the inverse image of z'y = « ; in the other, {, ,
the inverse image of ¢’ = ¢’'_. Indeed, C' separates
z'y = and ¢’ =¢', and consequently its image C
separates the corresponding images z, and {, .

By dropping an unnecessary subscript, we may
state the results obtained so far as a theorem.

THEOREM 1. Let C, be the curvilinear polygon

defined above, corresponding to the points z,, z,,... ,
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z, and to the pole z. Then C, separates z from the center
of mass £, of z,, z,,. .., z, relative to z.

5. The Fundamental Theorem. Let F(z) =

n

l—[ (z = z;) be a polynomial and z an arbitrary point.
j=1

Then the following theorem holds:
THEOREM 2. The center of mass {, of the zeros of
F(z), with respect to z is given by
{.=z-nF(z)/F'(z) (5)
Proof. Equation (5) follows immediately from
(4) and

F'(z) _ - 1
F(z) jiz-3z
THEOREM 3. [f the zeros z(j=1,2, ... ,n) of

F(z) belong to any circular domain D (i. e. , either all
are outside or all are inside some circle I') and if z is
outside D, then C_ is in D.

Proof. The smallest convex polygon C’ containing
all the (z';)’s is inside any circle I” that contains all
the (z';)’s. Indeed, I is convex and contains all
(z';)’s, while C’ is the smallest convex set that
contains all (z';)’s. We also observe that z' = @ is
outside I''. In particular, given the circle I' that
contains all or none of the z’s, let I'" be the image of I’
under (3). Then I’ separates z’ = © from C'. Hence,
when we map back, I' separates C,(the image of C")
from z (the image of z’ = ). Consequently, if z is not

in the circular domain D, then C, is in D and the proof
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is complete.

THEOREM 4. (Laguerre [ 10, vol. 1, pp. 161 -
166]). Let x be a simple zero of the polynomial F(z) of
degree n. The center of mass of the remaining zeros with
respect to x is

X=X(x)=x-2(n-1)F'(x)/F"(x) (6)

Proof. let F(z) = (z — x)f(z); then F"(z) =
2 (z) + (z—x)f"(z) and F'(2) =f(z) + (z -x)f (2)
so that F'(x) = f(x) and F"(x) = 2f'(x). We now
apply Theorem 2 to the polynomial f(z) of degree n — 1
and obtain (6), thus proving Theorem 4.

Now let I'; be a circle through x that contains all
the other zeros of F(z). By assumption x is a simple
zero; hence, one can deform I', slightly into a circle I’
that leaves x outside, but whose interior D still
contains all other zeros. Let C, be the curvilinear
polygon of these other zeros of F(z), with respect to x
as a pole. By Theorem 3 we know that C, C D, because
x 1s outside D. Also, by Theorem 1, C, separates x
from X(x) ; hence, X(x) is inside C, and, a fortiori,
in D. This finishes the proof of the following
fundamental theorem of Laguerre .

THEOREM 5. (Laguerre [ 10, vol. 1, pp.161 -
166]). Let f(z) be a polynomial of degree n and define
the function

X(z) =z -2(n - 1)f (2)/f"(2) (7)
Let z, be a simple zero of f(z) and consider a circle C

(possibly a straight line) through the point z, of the

4«»

b“




