21 22CIES (KR

O’REILLY"
% B+ % MR - ‘ Ben Klemens &

21 ﬁ‘lﬁac.l‘n 5 (TR

21st Century C

Ben Klemens &

O’REILLY"

Beijing - Cambridge « Farnham - Kéln - Sebastopol - Tokyo
O’Reilly Media, Inc. 44 &) X & i BAL iR

MR FEAF N

EBEE&RE (CIP) 8B

2142 CIEE . T/ (FE)R¥E(IH (Klemens, B.)
A . —ER . REAFHMRL, 20135

H4JR3C;: 21st Century C

ISBN 978-7-5641-4205-6

LO2+ MO~ M OCHES BRI - %X
IV. © TP312

R A B 508 CIP Bl (2013) 58097340 5

{LAE AR ERLA RRID
B . 10-2013-124 2

©2012 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2013. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 LR M@ O'Reilly Media, Inc. # & 2012,

F PR R Kk BRAR IR 2013, 36 PP RA 89 ok B Ae 4K 3 4% B ok BRAR A4 B AL 69 BT AT & —— O'Reilly
Media, Inc. &% ,

MACFTA , A @FT, KT o Fo £ UETH X EH,

21 2 CiEE (RZENRR)

HARRAT: ZRE K% H R

#ho kb FESUPUMEE2 S BB4W: 210096
oA A TLE

] hit: http://www.seupress.com
H,-FHif: . press@seupress.com

ED Rl i E A PR

A T8TE kK x 980FE K 16 &
E 3. 18.5

¥ . 362FF

ML k. 20134E5 A% 1 kR

Ell K. 201345 A% 1 KENRI

35 5. ISBN 978-7-5641-4205-6

%E #fr: 56.00 ¢ (f#)

AHEBE AN AR, EEESETHAR, B (7). 025-83791830

Preface

Is it really punk rock
Like the party line?

—Wilco, “Too Far Apart”

CIs Punk Rock

C has only a handful of keywords and is a bit rough around the edges, and it rocks.
You can do anything with it. Like the C, G, and D chords on a guitar, you can learn
the basic mechanics pretty quickly, and then spend the rest of your life getting better.
The people who don’t get it fear its power and think it too edgy to be safe. By all
rankings, it is consistently the most popular language that doesn’t have a corporation
or foundation spending money to promote it.!

Also, the language is about 40 years old, which makes it middle-aged. It was written
by a few guys basically working against management—the perfect punk rock origins—
but that was in the 1970s, and there’s been a lot of time for the language to go main-
stream.

What did people do when punk rock went mainstream? In the decades since its advent
in the 1970s, punk certainly has come in from the fringes: The Clash, The Offspring,
Green Day, and The Strokes sold millions of albums worldwide (to name just a few),
and I have heard lite instrumental versions of songs from the punk spinoff known as
grunge at my local supermarket. The former lead singer of Sleater-Kinney now has a
popular sketch comedy show that frequently lampoons punk rockers.2 One reaction
to the continuing evolution would be to take the hard line and say that the original stuff
was punk and everything else is just easy punk pop for the masses. The traditionalists
can still play their albums from the ’70s, and if the grooves are worn out, they can

1. This preface owes an obvious and huge debt to “Punk Rock Languages: A Polemic,” by Chris Adamson,
at http://pragprog.com/magazines/2011-03/punk-rock-languages.

2. With lyrics like “Can’t get to heaven with a three-chord song,” maybe Sleater-Kinney was post-punk?
Unfortunately, there is no ISO Punk standard we can look to for precise in-or-out definitions.

download a digitally mastered edition. They can buy Ramones hoodies for their
toddlers.

Outsiders don’t get it. Some of them hear the word punk and picture something out of
the 1970s—a historic artifact about some kids that were, at the time, really doing
something different. The traditionalist punks who still love and play their 1973 Iggy
Pop LPs are having their fun, but they bolster the impression that punk is ossified and
no longer relevant.

Getting back to the world of C, we have both the traditionalists, waving the banner of
ANSI ’89, and those who will rock out to whatever works and may not even realize that
the code they are writing would not have compiled or run in the 1990s. Outsiders don’t
get the difference. They see still-in-print books from the 1980s and still-online tutorials
from the 1990s, they hear from the hardcore traditionalists who insist on still writing
like that today, and they don’t even know that the language and the rest of its users
continue to evolve. That’s a shame, because they’re missing out on some great stuff.

This is a book about breaking tradition and keeping C punk rock. I really don’t care to
compare the code in this book to the original C specification in Kernighan & Ritchie’s
1978 book. My telephone has 512 megabytes of memory, so why are our C textbooks
still spending pages upon pages covering techniques to shave kilobytes off of our exe-
cutables? I am writing this on a bottom-of-the-line red netbook that can accommodate
3,200,000,000 instructions per second; what do I care about whether an operation
requires comparing 8 bits or 16? We should be writing code that we can write quickly
and that is readable by our fellow humans. We’re still writing in C, so our readable but
imperfectly optimized code will still run an order of magnitude faster than if we’d
written comparable code in any number of alternative, bloated languages.

Q & A (Or, the Parameters of the Book)
Q: How is this C book different from all others?

A: C textbooks are a pretty uniform bunch (I've read a lot of them, including [Griffiths
2012], [Kernighan 1978], [Kernighan 1988], [Kochan 2004], [Oualline 1997], [Perry
1994], [Prata 2004], and [Ullman 2004]). Most were written before the C99 standard
simplified many aspects of usage, and you can tell that some of those now in their Nth
edition just pasted in a few notes about updates rather than really rethinking how to
use the language. They all mention that there might be libraries that you could maybe
use in writing your own code, but they predate the installation tools and ecosystem we
have now that make using those libraries reliable and reasonably portable. Those text-
books are still valid and still have value, but modern C code just doesn’t look like the
code in those textbooks.

This book picks up where they left off, reconsidering the language and the ecosystem
in which it lives. The storyline here is about using libraries that provide linked lists and

x | Preface

XML parsers, not writing new ones from scratch. Itis about writing code that is readable
and function interfaces that are user-friendly.

Q: Who is this book for? Do I need to be a coding guru?

A: You have experience coding in any language, maybe Java or a scripting language
such as Perl. I don’t have to sell you on why your code shouldn’t just be one long routine
with no subfunctions.

You have some knowledge of C, but don’t worry if you don’t know it too well—as I'll
detail, there’s a lot you're better off never learning. If you are a blank slate with respect
to C syntax, it really is an aggressively simple language, and your search engine will
point you to dozens of C tutorials online; if you have experience with another language,
you should be able to get the basics in an hour or two.

I might as well point out to you that I have also written a textbook on statistical and
scientific computing, Modeling with Data [Klemens 2008]. Along with lots of details of
dealing with numeric data and using statistical models for describing data, it has a
standalone tutorial on C, which I naturally think overcomes many of the failings of
older C tutorials.

Q: I'm an application programmer, not a kernel hacker. Why should 1 use C instead
of a quick-to-write scripting language like Python?

A: If you are an application programmer, this book is for you. I read people asserting
that C is a systems language, which impresses me as so un-punk—who are they to tell
us what we're allowed to write?

Statements in the way of “Our language is almost as fast as C, but is easier to write”
are so common that they are almost cliché. Well, C is definitely as fast as C, and the
purpose of this book is to show you that C is easier to write than the textbooks from
decades past imply that it is. You don’t have to call malloc and get elbow-deep in
memory management half as often as the systems programmers of the 1990s did, we
have facilities for easier string handling, and even the core syntax has evolved to make
for more legible code.

I started writing C in earnest because 1 had to speed up a simulation in a scripting
language, R. Like so many other scripting languages, R has a C interface and encourages
the user to make use of it any time the host language is too slow. Eventually, I had so
many functions jumping out from the R script to C code that I just dropped the host
language entirely. Next thing you know, I'm writing a book on modern C technique.

Q: It’s nice that application programmers coming from scripting languages will like
this book, but I am a kernel hacker. I taught myself C in fifth grade and sometimes have
dreams that correctly compile. What new material can there be for me?

A: Creally has evolved in the last 20 years. As I'll discuss later, the set of things we are
guaranteed that all C compilers support has changed with time, thanks to two new C

Preface | xi

standards since the ANSI standard that defined the language for so long. Maybe have
a look at Chapter 10 and see if anything there surprises you.

Also, the environment has advanced. Autotools has entirely changed how distribution
of code happens, meaning that it is much easier to reliably call other libraries, meaning
that our code should spend less time reinventing common structures and routines and
more time calling the sort of libraries discussed throughout this book.

Q: I can’t help but notice that about a third of this book has almost no C code in it.

A: It is true: good C practice requires gathering good C tools. If you’re not using a
debugger (standalone or part of your IDE), you’re making your life much more difficult.
If you tell me that it’s impossible to track down memory leaks, then that means that
you haven’t heard of Valgrind, a system designed to point out the exact line where
memory leaks and errors occurred. Python and company have built-in package man-
agers; C’s de facto cross-platform packaging system, Autotools, is a standalone system
that is its own story.

If you use an attractive Integrated Development Environment (IDE) as a wrapper for
all these various tools, you may still benefit from knowing how your IDE is dealing with
environment variables and other minutiz that have been hidden from you but still crop
up and throw errors at you.

Q: Some of these tools you talk about are old. Aren’t there more modern alternatives
to these shell-oriented tools?

A: If we make fun of people who reject new things just because they’re new, then we
have no right to reject old things just because they’re old.

One can find reasonable sources putting the first six-string guitar around 1200, the first
four-string violin circa 1550, and the piano with keyboard around 1700. The odds are
good that most (if not all) of the music you listen to today will involve one of these
instruments. Punk rock didn’t happen by rejecting the guitar, but by using it creatively,
such as piping the guitar’s output through new filters.

Q: I have the Internet, and can look up commands and syntax details in a second or
two, so, really, why should I read this book?

A: It’s true: you can get an operator precedence table from a Linux or Mac command
prompt with man operator, so why am I going to put one here?

I've got the same Internet you’ve got, and I've spent a lot of time reading it. So I have
a good idea of what isn’t being talked about, and that’s what I stick to here. When
introducing a new tool, like gprof or GDB, I give you what you need to know to get
your bearings and ask your search engine coherent questions, and what other textbooks
missed (which is a lot).

xii | Preface

Standards: So Many to Choose From

Unless explicitly stated otherwise, everything in this book conforms to the ISO C99
and C11 standards. To make sense of what that means, and give you some historical
background, let us go through the list of major C standards (passing on the minor
revisions and corrections).

K & R (circa 1978)
Dennis Ritchie, Ken Thompson, and a handful of other contributors came up with
C while putting together the Unix operating system. Brian Kernighan and Dennis
Ritchie eventually wrote down a description of the language in the first edition of
their book, which set the first de facto standard [Kernighan 1978].

ANSI C89

Bell Labs handed over the stewardship of the language to the American National
Standards Institute. In 1989, they published their standard, which made a few
improvements over K & R. The second edition of K & R’s book included a full
specification of the language, which meant that tens of thousands of programmers
had a copy of the ANSI standard on their desks [Kernighan 1988]. The ANSI stan-
dard was adopted by the ISO in 1990 with no serious changes, but ANSI "89 seems
to be the more common term (and would make a great t-shirt slogan).

A decade passed. C went mainstream, in the sense that the base code for more or less
every PC and every Internet server was written in C, which is as mainstream as a human
endeavor could possibly become.

During this period, C++ split off and hit it big (although not quite as big). C++ was
the best thing to ever happen to C. While every other language was bolting on extra
syntax to follow the object-oriented trend and whatever other new tricks came to the
authors’ minds, C stuck to the standard. The people who wanted stability and porta-
bility used C, the people who wanted more and more features so they could wallow in
them like moist hundred dollar bills got C++, and everybody was happy.

ISO C99
The C standard underwent a major revision a decade later. Additions were made
for numeric and scientific computing, with a standard type for complex numbers
and some type-generic functions. A few conveniences from C++ got lifted, includ-
ing one-line comments (which originally came from one of C’s predecessor lan-
guages, BCPL) and being able to declare variables at the head of for loops. Using
structures was made easier thanks to a few additions to the rules for how they can
be declared and initialized, plus some notational conveniences. Things were mod-

ernized to acknowledge that security matters and that not everybody speaks
English.

When you think about just how much of an impact C89 had, and how the entire
globe was running on C code, it’s hard to imagine the ISO being able to put out
anything that wouldn’t be widely criticized—even a refusal to make any changes

Preface | xiii

would be reviled. And indeed, this standard was controversial. There are two com-
mon ways to express a complex variable (rectangular and polar coordinates)—so
where does the ISO get off picking one? Why do we need a mechanism for variable-
length macro inputs when all the good code got written without it? In other words,
the purists accused the ISO of selling out to the pressure for more features.

As of this writing, most compilers support C99 plus or minus a few caveats; the
long double type seems to cause a lot of trouble, for example. However, there is
one notable exception to this broad consensus: Microsoft currently refuses to add
C99 support to its Visual Studio C++ compiler. The section “Compiling C with
Windows” on page 6 covers some of the many ways to compile C code for
Windows, so not using Visual Studio is at most an inconvenience, and having a
major establishment player tell us that we can’t use ISO-standard C only bolsters
the punk rock of it all.

Cl1 ,
Self-conscious about the accusations of selling out, the ISO made few serious
changes in the third edition of the standard. We got a means of writing type-generic
functions, and things were modernized to further acknowledge that security mat-
ters and that not everybody speaks English.

I’m writing this in 2012, shortly after the C11 standard came out in December of
2011, and there’s already some support from compilers and libraries.

The POSIX Standard

That’s the state of things as far as C itself goes, but the language coevolved with the
Unix operating system, and you will see throughout the book that the interrelationship
matters for day-to-day work. If something is easy on the Unix command line, then it is
probably because it is easy in C; Unix tools are often written to facilitate writing C code.

Unix
C and Unix were designed at Bell Labs in the early 1970s. During most of the 20th
century, Bell was being investigated for monopolistic practices, and one of its
agreements with the US federal government included promises that Bell would not
expand its reach into software. So Unix was given away for free for researchers to
dissect and rebuild. The name Unix is a trademark, originally owned by Bell Labs
and subsequently traded off like a baseball card among a number of companies.

Variants of Unix blossomed, as the code was looked over, reimplemented, and im-
proved in different ways by diverse hackers. It just takes one little incompatibility to
make a program or script unportable, so the need for some standardization quickly
became apparent.

xiv | Preface

POSIX

This standard, first established by the Institute of Electrical and Electronics Engi-
neers (IEEE) in 1988, provided a common basis for Unix-like operating systems.
It specifies how the shell should work, what to expect from commands like 1s and
grep, and a number of C libraries that C authors can expect to have available. For
example, the pipes that command-line users use to string together commands are
specified in detail here, which means C’s popen (pipe open) function is POSIX-
standard, not ISO C standard. The POSIX standard has been revised many times;
the version as of this writing is POSIX:2008, and is what I am referring to when I
say that something is POSIX-standard. A POSIX-standard system must have a C
compiler available, via the command name c99.

This book will make use of the POSIX standard, though I'll tell you when.

With the exception of many members of a family of OSes from Microsoft, just
about every current operating system you could name is built on a POSIX-com-
pliant base: Linux, Mac OS X, i0S, webOS, Solaris, BSD—even Windows servers
“offer a POSIX subsystem. And for the hold-out OSes, “Compiling C with Win-
dows” on page 6 will show you how to install a POSIX subsystem.

Finally, there are two more implementations of POSIX worth noting because of their
prevalence and influence:

BSD

After Unix was sent out from Bell Labs for researchers to dissect, the nice people
at the University of California, Berkeley, made major improvements, eventually
rewriting the entire Unix code base to produce the Berkeley Software Distribution.
If you are using a computer from Apple, Inc., you are using BSD with an attractive
graphical frontend. BSD goes beyond POSIX in several respects, and we’ll see a
function or two that are not part of the POSIX standard but are too useful to pass
up (most notably the lifesaver that is asprintf).

GNU
[t stands for GNU’s Not Unix, and is the other big success story in independently
reimplementing and improving on the Unix environment. The great majority of
Linux distributions use GNU tools throughout. There are very good odds that you
have the GNU Compiler Collection (gcc) on your POSIX box—even BSD uses it.
Again, the gcc defines a de facto standard that extends C and POSIX in a few ways,
and I will be explicit when making use of those extensions.

Legally, the BSD license is slightly more permissive than the GNU license. Because some
parties are deeply concerned with the political and business implications of the licenses,
one can typically find both GNU and BSD versions of most tools. For example, both
the GNU Compiler Collection (gcc) and the BSD’s clang are top-notch C compilers.
The authors from both camps closely watch and learn from each other’s work, so we
can expect that the differences that currently exist will tend to even out over time.

Preface | xv

The Legal Sidebar

US law no longer has a registration system for copyright: with few exceptions, as soon
as anybody writes something down, it is copyrighted.

Of course, distribution of a library depends on copying from hard drive to hard drive,
and there are a number of common mechanisms for granting the right to copy a copy-
righted work with little hassle.

* The GNU Public License allows unlimited copying and use of the source code and
its executable version. There is one major condition: If you gistribute a program
or library based on the GPLed source code, then you must distribute the source
code to your program. Note well that if you use your program in-house and don’t
distribute it, this condition doesn’t hold, and you have no obligation to distribute
source. Running a GPLed program, like compiling your code with gec, does not
in itself obligate you to distribute source code, because the program output (such
as the executable you just compiled) is not considered to be based on or a derivative
of gcc. [Example: the GNU Scientific Library.]

* The Lesser GPL is much like the GPL, but it explicitly stipulates that if you are
linking to an LGPL library as a shared library, then your code doesn’t count as a
derivative work, and you aren’t obligated to distribute source. That is, you can
distribute closed-source code that links to an LGPL library. [Example: GLib.]

* The BSD license requires that you preserve copyrights and disclaimers for BSD-
licensed source code, but doesn’t require that you redistribute source code.
[Example: Libxml2, under the BSD-like MIT license.]

Please note the usual disclaimer: I am not a lawyer, and this is a sidebar summary of
several rather long legal documents. Read the documents themselves or consult a lawyer
if you are unsure about how the details apply to your situation.

Some Logistics

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, filenames and file paths, URLs, and email addresses. Many
new terms are defined in a glossary at the end of this book.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

xvi | Preface

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

e

\

This icon signifies a tip, suggestion, or general note.

Your Turn: These are exercises, to help you learn by doing and give

:‘:‘ you an excuse to get your hands on a keyboard.
A -
A

W a
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

The code examples for this title can be found here: http://examples.oreilly.com/
0636920025108/.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “21st Century C by Ben Klemens (O’Reilly).
Copyright 2013 Ben Klemens, 978-1-449-32714-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

.«» Safari Books Online (www.safaribooksonline.com) is an on-demand digital

Safari

semonne’ library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Preface | xvii

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/21st_century_c.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

wili | Preface

Acknowledgments

Nora Albert: general support, guinea pig.

Bruce Fields, Dave Kitabjian, Sarah Weissman: extensive and thorough review.
Patrick Hall: Unicode erudition.

Nathan Jepson and Shawn Wallace: editorial.

Rolando Rodriguez: testing, inquisitive use, and exploration.

Rachel Steely: production.

Ulrik Sverdrup: pointing out that we can use repeated designated initializers to set
default values.

Preface | xix

Table of Contents

BISEREE ones wescusagirns s pumssimmmosiyms s evesnmea anemms el D S T80 A LA ix
Partl. The Environment

1. Set Yourself Up for Easy Compilationccoooeeiiiiiiiiiiiiiiis 3

' Use a Package Manager 4

Compiling C with Windows 6

POSIX for Windows 6

Compiling C with POSIX 7

Compiling C Without POSIX 8

Which Way to the Library? 9

A Few of My Favorite Flags 10

Paths 12

Runtime Linking 14

Using Makefiles 15

Setting Variables 16

The Rules 18

Using Libraries from Source 21

Using Libraries from Source (Even if Your Sysadmin Doesn’t Want You To) 23

Compiling C Programs via Here Document 24

Include Header Files from the Command Line 25

The Unified Header 25

Here Documents 26

Compiling from stdin 27

2. Debug, Test, Documentcvvvunniiiiininieieiennuniiiiiiinens 29

Using a Debugger 29

GDB Variables 32

Print Your Structures 34

Using Valgrind to Check for Errors 37

Unit Testing 39

Using a Program as a Library
Coverage

Interweaving Documentation

.- Doxygen
Literate Code with CWEB

Error Checking
What Is the User’s Involvement in the Error?
The Context in Which the User Is Working
How Should the Error Indication Be Returned?

3. Packaging Your Project i, 5508 10 6 3 AT ALK 1§ 308 5 B

The Shell
Replacing Shell Commands with Their Outputs

Use the Shell’s for Loops to Operate on a Set of Files

Test for Files
fc
Makefiles vs. Shell Scripts
Packaging Your Code with Autotools
An Autotools Demo
Describing the Makefile with makefile.am
The configure Script

4, VersionControlcoivviiiniuiririenennrnrnenennensnens

Changes via diff

Git’s Objects
The Stash

Trees and Their Branches
Merging
The Rebase

Remote Repositories

5. PlayingNicewithOtherscccovviiiiiiiiinininn..

The Process
Writing to Be Read by Nonnatives
The Wrapper Function
Smuggling Data Structures Across the Border
Linking
Python Host
Compiling and Linking :
The Conditional Subdirectory for Automake
Distutils Backed with Autotools

41
42
43
44
45
47
47
49
50

53
54
54
56
57
60
62
64
66
69
73

77
78
79
82
83
84
86
87

89
89
89
90
91
92
93
94
94
96

iv | Table of Contents

Partll. The Language

G YourPHTREPOMBEY .. s cov oo nois o snsnavan suim woe niss swwwmnen oo vorenn s 101
Automatic, Static, and Manual Memory 101
Persistent State Variables 103
Pointers Without malloc 105
Structures Get Copied, Arrays Get Aliased 106
malloc and Memory-Twiddling 109
The Fault Is in Our Stars 110
All the Pointer Arithmetic You Need to Know 111
7. CTSyntaxYouCan bgnoreo emeunssn sonsonns oo san nse nonaws us smamn 115
Don’t Bother Explicitly Returning from main 116
Let Declarations Flow 116
Set Array Size at Runtime 118
Cast Less 119
Enums and Strings 120
Labels, gotos, switches, and breaks 122
goto Considered 122
switch 123
Deprecate Float 126
8. Obstaclesand Opportunityovviiuiieiniisiunneiiiiieennennnanns 131
Cultivate Robust and Flourishing Macros 131
Preprocessor Tricks 135
Linkage with static and extern 137
Declare Externally Linked Elements Only in Header Files 139
The const Keyword 141
Noun-Adjective Form 142
Tension 143
Depth 144

The char const ** Issue 145

0. TORE o 1000 500 00 010w w6 o wiois wais i wwaimin wisin o056 8 wmwate wioid oioie wors 3o 3 416 S 0te 149

Making String Handling Less Painful with asprintf ’ 149
Security 150
Constant Strings 151
Extending Strings with asprintf 152

A Pzan to strtok 154

Unicode 158
The Encoding for C Code 160
Unicode Libraries 161

Table of Contents | v

