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Preface

We translate to the domain of mathematical finance what F. Knight wrote, in
substance, in the preface of his Essentials of Brownian Motion and Diffusion
(1981): “it takes some temerity for the prospective author to embark on yet
another discussion of the concepts and main applications of mathematical
finance”. Yet, this is what we have tried to do in our own way, after
considerable hesitation.

Indeed, we have attempted to fill the gap that exists in this domain
between, on the one hand, mathematically oriented presentations which
demand quite a bit of sophistication in, say, functional analysis, and are thus
difficult for practitioners, and on the other hand, mainstream mathematical
finance books which may be hard for mathematicians just entering into
mathematical finance.

This has led us, quite naturally, to look for some compromise, which in
the main consists of the gradual introduction, at the same time, of a financial
concept, together with the relevant mathematical tools.

Interlacing: This program interlaces, on the one hand, the financial
concepts, such as arbitrage opportunities, admissible strategies, contingent
claims, option pricing, default risk and ruin problems, and on the other hand,
Brownian motion, diffusion processes, Lévy processes, together with the basic
properties of these processes. We have chosen to discuss essentially continuous-
time processes, which in some sense correspond to the real-time efficiency
of the markets, although it would also be interesting to study discrete-time
models. We have not done so, and we refer the reader to some relevant
bibliography in the Appendix at the end of this book. Another feature of
our book is that in the first half we concentrate on continuous-path processes,
whereas the second half deals with discontinuous processes.
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Special features of the book: Intending that this book should be
readable for both mathematicians and practitioners, we were led to a
somewhat unusual organisation, in particular:

1. in a number of cases, when the discussion becomes too technical, in the
Mathematics or the Finance direction, we give only the essence of the
argument, and send the reader to the relevant references,

2. we sometimes wanted a given section, or paragraph, to contain most of
the information available on the topic treated there. This led us to:

a) some forward references to topics discussed further in the book, which
we indicate throughout the book with an arrow ( »— )

b) some repetition or at least duplication of the same kind of topic
in various degrees of generality. Let us give an important example:
Ité’s formula is presented successively for continuous path semi-
martingales, Poisson processes, general semi-martingales, mixed pro-
cesses and Lévy processes.

We understand that this way of writing breaks away with the academic
tradition of book writing, but it may be more convenient to access an
important result or method in a given context or model.

About the contents: At this point of the Preface, the reader may expect
to find a detailed description of each chapter. In fact, such a description is
found at the beginning of each chapter, and for the moment we simply refer
the reader to the Contents and the user’s guide, which follows the Contents.

Numbering: In the following, C,S,B,R are integers. The book consists of
two parts, eleven chapters and two appendices. Each chapter C is divided into
sections C.S., which in turn are divided into subsections C.S.B. A statement in
Subsection C.S.B. is numbered as C.S.B.R. Although this system of numbering
is a little heavy, it is the only way we could find of avoiding confusion between
the numbering of statements and unrelated sections.

What is missing in this book? Besides discussing the content of
this book, let us also indicate important topics that are not considered
here: The term structure of interest rate (in particular Heath-Jarrow-Morton
and Brace-Gatarek-Musiela models for zero-coupon bonds), optimization of
wealth, transaction costs, control theory and optimal stopping, simulation
and calibration, discrete time models (ARCH, GARCH), fractional Brownian
motion, Malliavin Calculus, and so on.

History of mathematical finance: More than 100 years after the thesis
of Bachelier (39, 41], mathematical finance has acquired a history that is
only slightly evoked in our book, but by now many historical accounts and
surveys are available. We recommend, among others, the book devoted to
Bachelier by Courtault and Kabanov [199], the book of Bouleau [114] and
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the collective book [870], together with introductory. papers of Broadie and
Detemple [129], Davis [221], Embrechts [321], Girlich-{392], Gobet, [395, 396],
Jarrow and Protter [480], Samuelson [758], Taqqu {819} and-Rogers.[738], as
well as the seminal papers of Black and Scholes [105], Harrison and Kreps
[421] and Harrison and Pliska [422, 423]. It is also interesting to read the talks
given by the Nobel prize winners Merton [644] and Scholes [764] at the Royal
Academy of Sciences in Stockholm.

A philosophical point: Mathematical finance raises a number of
problems in probability theory. Some of the questions are deeply rooted
in the developments of stochastic processes (let us mention Bachelier once
again), while some other questions are new and necessitate the use of
sophisticated probabilistic analysis, e.g., martingales, stochastic calculus, etc.
These questions may also appear in apparently completely different fields,
e.g., Bessel processes are at the core of the very recent Stochastic Loewner
Evolutions (SLE) processes. We feel that, ultimately, mathematical finance
contributes to the foundations of the stochastic world.

Any relation with the present financial crisis (2007-7)7 The writing
of this book began in February 2001, at a time when probabilists who had
engaged in Mathematical Finance kept developing central topics, such as the
no-arbitrage theory, resting implicitly on the “good health of the market”,
i.e.: its “natural” tendency towards efficiency. Nowadays, “the market” is
in quite “bad health” as it suffers badly from illiquidity, lack of confidence,
misappreciation of risks, to name a few points. Revisiting previous axioms in
such a changed situation is a huge task, which undoubtedly shall be addressed
in the future. However, for obvious reasons, our book does not deal with these
new and essential questions.

Acknowledgements: We warmly thank Yann Le Cam, Olivier Le
Courtois, Pierre Patie, Marek Rutkowski, Paavo Salminen and Michael
Suchanecki, who carefully read different versions of this work and sent us many
references and comments, and Vincent Torri for his advice on Tex language.
We thank Ch. Bayer, B. Bergeron, B. Dengler, B. Forster, D. Florens, A.
Hula, M. Keller-Ressel, Y. Miyahara, A. Nikeghbali, A. Royal, B. Rudloff,
M. Siopacha, Th. Steiner and R. Warnung for their helpful suggestions. We
also acknowledge help from Robert Elliott for his accurate remarks and his
checking of the English throughout our text. All simulations were done by
Yann Le Cam. Special thanks to John Preater and Hermann Makler from the
Springer staff, who did a careful check of the language and spelling in the last
version, and to Donatas Akmanavicius for editing work.

Drinking “sok z czarnych porzeczek” (thanks Marek!) was important while
Monique was working on a first version. Marc Chesney greatly acknowledges
support by both the University Research Priority Program “Finance and
Financial Markets” and the National Center of Competence in Research



viii Preface

FINRISK. They are research instruments, respectively of the University of
Zurich and of the Swiss National Science Foundation. He would also like to
acknowledge the kind support received during the initial stages of this book
project from group HEC (Paris), where he was a faculty member at the time.

All remaining errors are our sole responsibility. We would appreciate
comments, suggestions and corrections from readers who may send e-mails
to the corresponding author Monique Jeanblanc at monique.jeanblanc@univ-

evry.fr.
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User’s Guide

This book consists of two parts: the first part concerns continuous-path
processes, and the second part concernes jump processes.

Part I:

Chapter 1 introduces the main results for continuous-path processes and
presents many examples, including in particular Brownian motion.

Chapter 2 presents the main tools in finance: self-financing portfolios,
valuation of contingent claims, hedging strategies.

Chapter 3 contains some useful information about hitting times and their
laws. Closed form expressions are given in the case of (geometric) Brownian
motion.

Chapter 4 discusses finer properties of Brownian motion, e.g., local times,
bridges, excursions and meanders.

Chapter 5 is devoted mainly to the presentation of one-dimensional
diffusions, thus extending the scope of Chapter 4. Filtration problems are
also studied.

Chapter 6 focuses on Bessel processes and applications to finance.

Part II:

Chapter 7 is concerned with models of default risk, which involve stochastic
processes with a single jump.

Chapter 8 introduces Poisson and compound Poisson processes, which are
standard examples of jump processes.

Chapter 9 contains general theory of semi-martingales and aims at unifying
results obtained in Chapters 1 and 8.

Chapter 10 presents some jump-diffusion processes and their applications
to Finance.

Chapter 11 gives basic results about Lévy processes.

Chapter 12 consists of a list of useful formulae found throughout this book.
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Notation and Abbreviations

We shall use the standard notation and abbreviations.

We shall use increasing instead of nondecreasing and positive instead

of non-negative.

u.i.
BM
I.v.
e.m.m.
a.s.
w.r.t.
w.l.g.
SDE
BSDE
PRP
MCT
rVy =
ANy =
Ty
HxX

J2 dsf(s) =
X'y

XmértY
XeF
X € bF
N(z) =

. uniformly integrable (for a family of r.v.’s)
: Brownian motion

: random variable

: equivalent martingale measure

: almost surely

: with respect to

: without loss of generality

: Stochastic Differential Equation

: Backward Stochastic Differential Equation
: Predictable Representation Property

: Monotone Class Theorem

sup(z, y)
inf(z,y)

: scalar product of the vectors z,y € R¢
: stochastic integral of the process H with respect to the

semi-martingale X

zVO0
%f:fx

: set of functions with continuous bounded derivatives

up to n-th order

: A function (or a process) evaluated at time t.

If 41 is a deterministic function, pu(t) is preferably used;
if 1 is a process, when the subscript is not too large,
(¢ is prefered

f: f(s)ds when it seems convenient

: the random variables (or the processes) X and Y have

the same law

: the process X — Y is a local martingale
: X is a F-measurable r.v., i.e., X € LO(F)
: X is a bounded F-measurable random variable

ﬁ f_xoo e_y2f2dy, the cumulative function for a

standard Gaussian law

Other notation can be found in the glossary at the end of the volume.
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At the end of the book, the reader will find an extended bibliography, and
a list of references, sorted by thema, followed by an index of authors, in which
the page number where each author is quoted is specified.

In the text, some important words are in boldface. These words are also
found in the subject index. Some notation can be found in the notation index.

To complete this guide, we emphasize some particular features of this book,
already mentioned in the Preface:
e in some cases, proofs are sketched and/or omitted, but precise references
are given,
e forward references to topics discussed further in the book are indicated
with the arrow — ;
e we proceed by generalization: an important case/process is discussed,
followed (a little later) by a general study.

Throughout this book, the symbol [J indicates the end of a proof, the symbol
< indicates the end of an exercise and the symbol » is used to separate a long
proof into different parts.

Section 2.1 refers to Chapter 2, Section 1, and Subsection 4.3.7 refers to

Chapter 4, Section 3, Subsection 7. Theorem (Proposition, Lemma) 3.2.1.4
is the 4th in Chapter 3, Section 2, Subsection 1.

Begin at the beginning, and go on till you come to the end. Then, stop.

Lewis Carroll, Alice’s Adventures in Wonderland.
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