RS T SR D S BRI v o s (S W R T
HadoopiR{EF Mt (FenkR)

Operations

O’REILLY"
§ k% HRit Eric Sammer &

HadoopiE{EF M wam

Hadoop Operations

Eric Sammer &

O’REILLY"

Beijing - Cambridge - Farnham - KdIn - Sebastopol « Tokyo
O’Reilly Media, Inc. 24 A& i K 5 & BaAL B JR

MR REAFHRY

EHEMmSE (CIP) #iE

Hadoop #:/EFM . FEIL/(E)PEB/R (Sammer, E.)
. A . —FER: REAFHRE, 20136

45453 Hadoop Operations

ISBN 978-7-5641-4258-2

. OH- IL O ML OFIEAERE M — FAF
M — 5 IV. © TP274-62

HE A B 450 CIP fdi iz (2013) 25104947 5

TLIHE R R EALA B IE
B4, 10-2013-118 &

©2012 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2013. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights

to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3% L& k@ O’Reilly Media, Inc. & 2 2012,

FXH PR A K s MRA IR 2013, 36 % EP IR 49t MR A4l 1 AR B ok AR A 4B AR R BT — O’Reilly
Media, Inc. #3% T ,

WA, ARFH&ET, KBTI F0 2R UETH XEH .

Hadoop #/EFM (R2ENRR)

HAR AT AR K5 AR+

oo kb MM S #B 4 : 210096
R A T

Pl fik: http://www.seupress.com

HLF# {4 . press@seupress.com

BN Rl ki EN R R4

A, 78Tk x 980K 16 FF A

7k: 18.75

H. 367 T

. 2013486 HE 1 1R

. 2013 4E 6 A58 1 RENAI

5 : ISBN 978-7-5641-4258-2

#r: 59.00 ¢ ()

AHEBERENE TR, S SERTER, BiE (f5H). 025-83791830

e IFHIH

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,

statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-

mined by context.

s

\
This icon signifies a tip, suggestion, or general note.
LAY
[T

a
N

This icomr indicates a warning or caution.

-
Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hadoop Operations by Eric Sammer
(O’Reilly). Copyright 2012 Eric Sammer, 978-1-449-32705-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf ..> Safari Books Online (www.safaribooksonline.com) is an on-demand digital
aiari library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/hadoop_operations.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

x | Preface

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I want to thank Aida Escriva-Sammer, my wife, best friend, and favorite sysadmin, for
putting up with me while I wrote this.

None of this was possible without the support and hard work of the larger Apache
Hadoop community and ecosystem projects. [want to encourage all readers to get
involved in the community and open source in general.

Matt Massie gave me the opportunity to do this, along with O’Reilly, and then cheered
me on the whole way. Both Matt and Tom White coached me through the proposal
process. Mike Olson, Omer Trajman, Amr Awadallah, Peter Cooper-Ellis, Angus Klein,
and the rest of the Cloudera management team made sure I had the time, resources,
and encouragement to get this done. Aparna Ramani, Rob Weltman, Jolly Chen, and
Helen Friedland were instrumental throughout this process and forgiving of my con-
stant interruptions of their teams. Special thanks to Christophe Bisciglia for giving me
an opportunity at Cloudera and for the advice along the way.

Many people provided valuable feedback and input throughout the entire process, but
especially Aida Escriva-Sammer, Tom White, Alejandro Abdelnur, Amina Abdulla,
Patrick Angeles, Paul Battaglia, Will Chase, Yanpei Chen, Eli Collins, Joe Crobak, Doug
Cutting, Joey Echeverria, Sameer Farooqui, Andrew Ferguson, Brad Hedlund, Linden
Hillenbrand, Patrick Hunt, Matt Jacobs, Amandeep Khurana, Aaron Kimball, Hal Lee,
Justin Lintz, Todd Lipcon, Cameron Martin, Chad Metcalf, Meg McRoberts, Aaron T.
Mpyers, Kay Ousterhout, Greg Rahn, Henry Robinson, Mark Roddy, Jonathan Seidman,
Ed Sexton, Loren Siebert, Sunil Sitaula, Ben Spivey, Dan Spiewak, Omer Trajman,
Kathleen Ting, Erik-Jan van Baaren, Vinithra Varadharajan, Patrick Wendell, Tom
Wheeler, Ian Wrigley, Nezih Yigitbasi, and Philip Zeyliger. To those whom I may have
omitted from this list, please forgive me.

The folks at O’Reilly have been amazing, especially Courtney Nash, Mike Loukides,
Maria Stallone, Arlette Labat, and Meghan Blanchette.

Jaime Caban, Victor Nee, Travis Melo, Andrew Bayer, Liz Pennell, and Michael De-
metria provided additional administrative, technical, and contract support.

Finally, a special thank you to Kathy Sammer for her unwavering support, and for
teaching me to do exactly what others say you cannot.

Preface | xi

Portions of this book have been reproduced or derived from software and documen-
tation available under the Apache Software License, version 2 (http://www.apache.org/
licenses/LICENSE-2.0).

xii | Preface

Table of Contents

PROTACE 5 i aio s wrm ws w6 31 s 000 0 i 000 WiBT8 A 6 50wt & 0 B3B8 6 20 00 3 0 950 38,0 010 Wi 8 ix
Te INKXORIREERONN w ¢ e wim s o voens o wen i min wors mcm » w0 o v e 0 o 2 i 546 0 o 350 1
2o TADES, i s xima o oo ain w0k 5208 i w10 97008 6 3 47§08) A 1058 3.5 4 AN RIS R O 3 7

Goals and Motivation 7
Design 8
Daemons 9
Reading and Writing Data 11
The Read Path 12
The Write Path 13
Managing Filesystem Metadata 14
Namenode High Availability 16
Namenode Federation 18
Access and Integration 20
Command-Line Tools 20
FUSE 23
REST Support 23

Fo MAPROAUCR . 5is v 50 5500 w05 5 0w 513 5 555 woosd 508 6 500 W00k 50 000 50 B 5 0 605§ A0 WU 0 6000 25
The Stages of MapReduce 26
Introducing Hadoop MapReduce 33
Daemons 34
When It All Goes Wrong 36
YARN 37
& Planninga HadoOPTIRSERY o « xa wes on snn s s 9om oiw 6 50 womis w0 5 550 5eon 395 .06 w10 3 00 w7 4
Picking a Distribution and Version of Hadoop 41
Apache Hadoop 41
Cloudera’s Distribution Including Apache Hadoop 42
Versions and Features 42

What Should I Use? 44

Hardware Selection 45
Master Hardware Selection 46
Worker Hardware Selection 48
Cluster Sizing 50
Blades, SANs, and Virtualization 52

Operating System Selection and Preparation 54
Deployment Layout 54
Software 56
Hostnames, DNS, and Identification 57
Users, Groups, and Privileges 60

Kernel Tuning 62
vm.swappiness 62
vm.overcommit_memory 62

Disk Configuration 63
Choosing a Filesystem 64
Mount Options 66

Network Design 66
Network Usage in Hadoop: A Review 67
1 Gb versus 10 Gb Networks 69
Typical Network Topologies 69

5. Installation and Configurationccooiiiiiiiiiiiiiiiiiiniiinen, 75

Installing Hadoop 75
Apache Hadoop 76
CDH 80

Configuration: An Overview 84
The Hadoop XML Configuration Files 87

Environment Variables and Shell Scripts 88

Logging Configuration 90

HDEFS 93
Identification and Location ' 93
Optimization and Tuning 95
Formatting the Namenode 99
Creating a /tmp Directory 100

Namenode High Availability 100
Fencing Options 102
Basic Configuration 104
Automatic Failover Configuration 105
Format and Bootstrap the Namenodes 108

Namenode Federation 113

MapReduce 120
Identification and Location 120

vi | Table of Contents

Optimization and Tuning
Rack Topology
Security

Identity, Authentication, and Authorization

Identity
Kerberos and Hadoop
Kerberos: A Refresher
Kerberos Support in Hadoop
Authorization
HDFS
MapReduce
Other Tools and Systems
Tying It Together

Resource Managementcc.eviieveennnnnnnes

What Is Resource Management? -
HDFS Quotas
MapReduce Schedulers

The FIFO Scheduler

The Fair Scheduler

The Capacity Scheduler

The Future

Cluster Maintenanceooveeeeeiinneerennnnnnenns

Managing Hadoop Processes
Starting and Stopping Processes with Inic Scripts
Starting and Stopping Processes Manually
HDFS Maintenance Tasks
Adding a Datanode
Decommissioning a Datanode
Checking Filesystem Integrity with fsck
Balancing HDFS Block Data
Dealing with a Failed Disk
MapReduce Maintenance Tasks
Adding a Tasktracker
Decommissioning a Tasktracker
Killing a MapReduce Job
Killing a MapReduce Task
Dealing with a Blacklisted Tasktracker

Troubleshootingcccovviiiiiiiiiiiiniinnnnnn,

Differential Diagnosis Applied to Systems

122
130
133

................. 135

137
137
138
140
153
153
155
159
164

............. wes 107

167
168
170
171
173
185
193

................ 195

195
195
196
196
196
197
198
202
204
205
205
206
206
207
207

................. 209

209

Table of Contents | vii

Common Failures and Problems
Humans (You)
Misconfiguration
Hardware Failure
Resource Exhaustion
Host Identification and Naming
Network Partitions

“Is the Computer Plugged In?”
E-SPORE

Treatment and Care

War Stories
A Mystery Bottleneck
There’s No Place Like 127.0.0.1

10; MORIOIING o o0 0 0 000 0w 00 i 070 i s e W70 3 958067 & 56 6 9 0,0 78 .0
An Overview
Hadoop Metrics
Apache Hadoop 0.20.0 and CDH3 (metrics1)
Apache Hadoop 0.20.203 and Later, and CDH4 (metrics2)
What about SNMP?
Health Monitoring
Host-Level Checks
All Hadoop Processes
HDEFS Checks
MapReduce Checks

11. BackupandRecoveryc.cooiuiiiiiiiiiiiiiiiiiiiiiiiiiennennnns
Data Backup
Distributed Copy (distcp)
Parallel Data Ingestion
Namenode Metadata

Appendix: Deprecated Configuration Propertiesccovvviiivniennnnnn..

211
211
212
213
213
214
214
215
215
217
220
221
224

229
229
230
231
237
239
239
240
242
244
246

249
249
250
252
254

viii | Table of Contents

CHAPTER 1
Introduction

Over the past few years, there has been a fundamental shift in data storage, manage-
ment, and processing. Companies are storing more data from more sources in more
formats than ever before. This isn’tjust about being a “data packrat” but rather building
products, features, and intelligence predicated on knowing more about the world
(where the world can be users, searches, machine logs, or whatever is relevant to an
organization). Organizations are finding new ways to use data that was previously be-
lieved to be of little value, or far too expensive to retain, to better serve their constitu-
ents. Sourcing and storing data is one half of the equation. Processing that data to
produce information is fundamental to the daily operations of every modern business.

Data storage and processing isn’ta new problem, though. Fraud detection in commerce
and finance, anomaly detection in operational systems, demographic analysis in ad-
vertising, and many other applications have had to deal with these issues for decades.
What has happened is that the volume, velocity, and variety of this data has changed,
and in some cases, rather dramatically. This makes sense, as many algorithms benefit
from access to more data. Take, for instance, the problem of recommending products
to a visitor of an ecommerce website. You could simply show each visitor a rotating list
of products they could buy, hoping that one would appeal to them. It’s not exactly an
informed decision, but it’s a start. The question is what do you need to improve the
chance of showing the right person the right product? Maybe it makes sense to show
them what you think they like, based on what they’ve previously looked at. For some
products, it’s useful to know what they already own. Customers who already bought
a specific brand of laptop computer from you may be interested in compatible acces-
sories and upgrades.! One of the most common techniques is to cluster users by similar
behavior (such as purchase patterns) and recommend products purchased by “similar”
users. No matter the solution, all of the algorithms behind these options require data

1. 1 once worked on a data-driven marketing project for a company that sold beauty products. Using
purchase transactions of all customers over a long period of time, the company was able to predict when
a customer would run out of a given product after purchasing it. As it turned out, simply offering them
the same thing about a week before they ran out resulted in a (very) noticeable lift in sales.

and generally improve in quality with more of it. Knowing more about a problem space
generally leads to better decisions (or algorithm efficacy), which in turn leads to happier
users, more money, reduced fraud, healthier people, safer conditions, or whatever the
desired result might be.

Apache Hadoop is a platform that provides pragmatic, cost-effective, scalable infra-
structure for building many of the types of applications described earlier. Made up of
a distributed filesystem called the Hadoop Distributed Filesystem (HDFS) and a com-
putation layer that implements a processing paradigm called MapReduce, Hadoop is
an open source, batch data processing system for enormous amounts of data. We live
in a flawed world, and Hadoop is designed to survive in it by not only tolerating hard-
ware and software failures, but also treating them as first-class conditions that happen
regularly. Hadoop uses a cluster of plain old commodity servers with no specialized
hardware or network infrastructure to form a single, logical, storage and compute plat-
form, or cluster, that can be shared by multiple individuals or groups. Computation in
Hadoop MapReduce is performed in parallel, automatically, with a simple abstraction
for developers that obviates complex synchronization and network programming. Un-
like many other distributed data processing systems, Hadoop runs the user-provided
processing logic on the machine where the data lives rather than dragging the data
across the network; a huge win for performance.

For those interested in the history, Hadoop was modeled after two papers produced
by Google, one of the many companies to have these kinds of data-intensive processing
problems. The first, presented in 2003, describes a pragmatic, scalable, distributed
filesystem optimized for storing enormous datasets, called the Google Filesystem (http:
/lresearch.google.com/archive/gfs.html), or GFS. In addition to simple storage, GFS was
built to support large-scale, data-intensive, distributed processing applications. The
following year, another paper, titled "MapReduce: Simplified Data Processing on Large
Clusters (http://research.google.com/archive/mapreduce.html)," was presented, defining
a programming model and accompanying framework that provided automatic paral-
lelization, fault tolerance, and the scale to process hundreds of terabytes of data in a
single job over thousands of machines. When paired, these two systems could be used
to build large data processing clusters on relatively inexpensive, commodity machines.
These papers directly inspired the development of HDFS and Hadoop MapReduce,
respectively.

Interest and investment in Hadoop has led to an entire ecosystem of related software
both open source and commercial. Within the Apache Software Foundation alone,
projects that explicitly make use of, or integrate with, Hadoop are springing up regu-
larly. Some of these projects make authoring MapReduce jobs easier and more acces-
sible, while others focus on getting data in and out of HDFS, simplify operations, enable
deployment in cloud environments, and so on. Here is a sampling of the more popular
projects with which you should familiarize yourself:

2 | Chapter1: Introduction

Apache Hive (http://hive.apache.org)
Hive creates a relational database-style abstraction that allows developers to write
a dialect of SQL, which in turn is executed as one or more MapReduce jobs on the
cluster. Developers, analysts, and existing third-party packages already know and
speak SQL (Hive’s dialect of SQL is called HiveQL and implements only a subset
of any of the common standards). Hive takes advantage of this and provides a quick
way to reduce the learning curve to adopting Hadoop and writing MapReduce jobs.
For this reason, Hive is by far one of the most popular Hadoop ecosystem projects.

Hive works by defining a table-like schema over an existing set of files in HDFS
and handling the gory details of extracting records from those files when a query
isrun. The data on disk is never actually changed, just parsed at query time. HiveQL
statements are interpreted and an execution plan of prebuilt map and reduce
classes is assembled to perform the MapReduce equivalent of the SQL statement.
Apache Pig (http://pig.apache.org)

Like Hive, Apache Pig was created to simplify the authoring of MapReduce jobs,
obviating the need to write Java code. Instead, users write data processing jobs in
a high-level scripting language from which Pig builds an execution plan and exe-
cutes a series of MapReduce jobs to do the heavy lifting. In cases where Pig doesn’t
support a necessary function, developers can extend its set of built-in operations
by writing user-defined functions in Java (Hive supports similar functionality as
well). If you know Perl, Python, Ruby, JavaScript, or even shell script, you can learn
Pig’s syntax in the morning and be running MapReduce jobs by lunchtime.

Apache Sqoop (http://sqoop.apache.org)
Not only does Hadoop not want to replace your database, it wants to be friends
with it. Exchanging data with relational databases is one of the most popular in-
tegration points with Apache Hadoop. Sqoop, short for “SQL to Hadoop,” per-
forms bidirectional data transfer between Hadoop and almost any database with
a JDBC driver. Using MapReduce, Sqoop performs these operations in parallel
with no need to write code.

For even greater performance, Sqoop supports database-specific plug-ins that use
native features of the RDBMS rather than incurring the overhead of JDBC. Many
of these connectors are open source, while others are free or available from com-
mercial vendors at a cost. Today, Sqoop includes native connectors (called direct
support) for MySQL and PostgreSQL. Free connectors exist for Teradata, Netezza,
SQL Server, and Oracle (from Quest Software), and are available for download
from their respective company websites.

Apache Flume (http://flume.apache.org)
Apache Flume is a streaming data collection and aggregation system designed to
transport massive volumes of data into systems such as Hadoop. It supports native
connectivity and support for writing directly to HDFS, and simplifies reliable,
streaming data delivery from a variety of sources including RPC services, log4j
appenders, syslog, and even the output from OS commands. Data can be routed,

Introduction | 3

load-balanced, replicated to multiple destinations, and aggregated from thousands
of hosts by a tier of agents.

Apache Oozie (http://incubator.apache.org/oozie/)
It’s not uncommon for large production clusters to run many coordinated Map-
Reduce jobs in a workfow. Apache Oozie is a workflow engine and scheduler built
specifically for large-scale job orchestration on a Hadoop cluster. Workflows can
be triggered by time or events such as data arriving in a directory, and job failure
handling logic can be implemented so that policies are adhered to. Oozie presents
a REST service for programmatic management of workflows and status retrieval.

Apache Whirr (hitp://whirr.apache.org)

Apache Whirr was developed to simplify the creation and deployment of ephem-
eral clusters in cloud environments such as Amazon’s AWS. Run as a command-
line tool either locally or within the cloud, Whirr can spin up instances, deploy
Hadoop, configure the software, and tear it down on demand. Under the hood,
Whirr uses the powerful jclouds (http://www.jclouds.org/) library so that it is cloud
provider-neutral. The developers have put in the work to make Whirr support
both Amazon EC2 and Rackspace Cloud. In addition to Hadoop, Whirr under-
stands how to provision Apache Cassandra, Apache ZooKeeper, Apache HBase,
ElasticSearch, Voldemort, and Apache Hama.

Apache HBase (http://hbase.apache.org)

Apache HBase is a low-latency, distributed (nonrelational) database built on top
of HDFS. Modeled after Google’s Bigtable (http://research.google.com/archive/bigt
able.html), HBase presents a flexible data model with scale-out properties and a
very simple API. Data in HBase is stored in a semi-columnar format partitioned by
rows into regions. It’s not uncommon for a single table in HBase to be well into the
hundreds of terabytes or in some cases petabytes. Over the past few years, HBase
has gained a massive following based on some very public deployments such as

Facebook’s Messages platform (http://www.facebook.com/note.php?note_id=
454991608919). Today, HBase is used to serve huge amounts of data to real-time
systems in major production deployments.

Apache ZooKeeper (http://zookeeper.apache.org)

A true workhorse, Apache ZooKeeper is a distributed, consensus-based coordina-
tion system used to support distributed applications. Distributed applications that
require leader election, locking, group membership, service location, and config-
uration services can use ZooKeeper rather than reimplement the complex coordi-
nation and error handling that comes with these functions. In fact, many projects
within the Hadoop ecosystem use ZooKeeper for exactly this purpose (most no-
tably, HBase).

Apache HCatalog (http://incubator.apache.org/hcatalog/)
A relatively new entry, Apache HCatalog is a service that provides shared schema
and data access abstraction services to applications with the ecosystem. The

4 | Chapter1: Introduction

long-term goal of HCatalog is to enable interoperability between tools such as
Apache Hive and Pig so that they can share dataset metadata information.

The Hadoop ecosystem is exploding into the commercial world as well. Vendors such
as Oracle, SAS, MicroStrategy, Tableau, Informatica, Microsoft, Pentaho, Talend, HP,
Dell, and dozens of others have all developed integration or support for Hadoop within
one or more of their products. Hadoop is fast becoming (or, as an increasingly growing
group would believe, already has become) the de facto standard for truly large-scale
data processing in the data center.

If you're reading this book, you may be a developer with some exposure to Hadoop
looking to learn more about managing the system in a production environment. Alter-
natively, it could be that you're an application or system administrator tasked with
owning the current or planned production cluster. Those in the latter camp may be
rolling their eyes at the prospect of dealing with yet another system. That’s fair, and we
won’t spend a ton of time talking about writing applications, APIs, and other pesky
code problems. There are other fantastic books on those topics, especially Hadoop: The
Definitive Guide (http://shop.oreilly.com/product/0636920021773.do) by Tom White
(O’Reilly). Administrators do, however, play an absolutely critical role in planning,
installing, configuring, maintaining, and monitoring Hadoop clusters. Hadoop is a
comparatively low-level system, leaning heavily on the host operating system for many
features, and it works best when developers and administrators collaborate regularly.
What you do impacts how things work.

It’s an extremely exciting time to get into Apache Hadoop. The so-called big data space
is all the rage, sure, but more importantly, Hadoop is growing and changing at a stag-
gering rate. Each new version—and there have been a few big ones in the past year or
two—brings another truckload of features for both developers and administrators
alike. You could say that Hadoop is experiencing software puberty; thanks to its rapid
growth and adoption, it’s also a little awkward at times. You'll find, throughout this
book, that there are significant changes between even minor versions. It’s a lot to keep
up with, admittedly, but don’t let it overwhelm you. Where necessary, the differences
are called out, and a section in Chapter 4 is devoted to walking you through the most
commonly encountered versions.

This book is intended to be a pragmatic guide to running Hadoop in production. Those
who have some familiarity with Hadoop may already know alternative methods for
installation or have differing thoughts on how to properly tune the number of map slots
based on CPU utilization.2 That’s expected and more than fine. The goal is not to
enumerate all possible scenarios, but rather to call out what works, as demonstrated
in critical deployments.

Chapters 2 and 3 provide the necessary background, describing what HDFS and Map-
Reduce are, why they exist, and at a high level, how they work. Chapter 4 walks you

2. We also briefly cover the flux capacitor and discuss the burn rate of energon cubes during combat.

Introduction | 5

through the process of planning for an Hadoop deployment including hardware selec-
tion, basic resource planning, operating system selection and configuration, Hadoop
distribution and version selection, and network concerns for Hadoop clusters. If you
are looking for the meat and portatoes, Chapter 5 is where it’s at, with configuration
and setup information, including a listing of the most critical properties, organized by
topic. Those that have strong security requirements or want to understand identity,
access, and authorization within Hadoop will want to pay particular attention to
Chapter 6. Chapter 7 explains the nuts and bolts of sharing a single large cluster across
multiple groups and why this is beneficial while still adhering to service-level agree-
ments by managing and allocating resources accordingly. Once everything is up and
running, Chapter 8 acts as a run book for the most common operations and tasks.
Chapter 9 is the rainy day chapter, covering the theory and practice of troubleshooting
complex distributed systems such as Hadoop, including some real-world war stories.
In an attempt to minimize those rainy days, Chapter 10 is all about how to effectively
monitor your Hadoop cluster. Finally, Chapter 11 provides some basic tools and tech-
niques for backing up Hadoop and dealing with catastrophic failure.

6 | Chapter1: Introduction

