N

Mathematics Monograph Series 25

Bifurcation Theory
of Limit Cycles

Han Maoan

(R PRER S 323 IE)

LT SCIENCE PRESS
4 Beijing



Supported by the National Fund for Academic Publication in
Science and Technology

Mathematics Monograph Series 25
Han Maoan

Bifurcation Theory of Limit Cycles

(FRPRI 7> Z3EiL)

mnpy Science Press
4 Beijing



Responsible Editor: Li Xin

Copyright© 2013 by Science Press
Published by Science Press

16 Donghuangchenggen North Street
Beijing 100717, China

Printed in Beijing

All rights reserved. No part of##i%. publicatipf Tifaybe reproduced, stored
in a retrieval system, or tfanskiittediin/any forfl oy By any means, elec-
tronic, mechanical, photocepying, recording or*otfierwise, without the
prior written permission pfdfie copyright owner.

ISBN 978-7-03-036140-0



Dedicated to Professor Ye Yangian (1923-2008)



Preface

In this book we present the bifurcation theory of limit cycles of planar systems
with multiple parameters. The theory studies the changes of orbital behavior in the
phase space, especially the number of limit cycles as we vary the parameters in the
system. This theory has been considered and developed by many mathematicians
starting with Poincaré who first introduced the notion of limit cycles. A fundamental
step towards modern bifurcation theory in differential equations occurred with the
definition of structural stability and the classification of structurally stable systems
in the plane in 1937 developed by Andronov, Leontovich and Pontryain. A further
development of the theory had taken different directions, such as selecting bifurcation
sets of codimension one for primary bifurcations and of arbitrary codimension in the
general case for degenerate bifurcations, and finding the number of limit cycles in
Hopf bifurcation or by perturbing Hamiltonian systems. In the two-dimensional case,
as was proved in Andronov et al.l?l, rough systems compose an open and dense set
in the space of all systems on a plane, and the non-rough systems fill the boundaries
between different regions of structural stability in this space. The bifurcation theory
studies orbital behavior of the non-rough systems under perturbations.

As asked by D. Hilbert in his 16th problem!(!%7], the main task in the study of a
given planar system is the number and location of limit cycles. Many studies have
concentrated on perturbations of Hamiltonian systems. For this kind of systems,
an important tool used to find the number of limit cycle is the so-called Melnikov
function or Abelian integral in the case of polynomial equations. The function can
be used to study the number of limit cycles which are produced from a center point,
a homoclinic loop, a heteroclinic loop or an annulus consisting of a family of periodic
orbits under perturbations.

The present book focuses on an in-depth study of limit cycles with general meth-
ods of both local and global bifurcations for small perturbations of Hamiltonian
systems with the help of Melnikov functions.

The book consists of five chapters. In the first chapter, some basic notations
related to limit cycles are first introduced, such as Poincaré map, stability and mul-
tiplicity of a limit cycle. Then fundamental properties of limit cycles are established,
say, invariance of stability and multiplicity under changes of variables. With the help
of Poincaré map, some simple bifurcation phenomena near a non-hyperbolic limit
cycle are analyzed under perturbations. The topic of the second chapter is Hopf
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bifurcation. Poincaré map near a focus, and the stability, order and focus values
related to a focus are first defined. Then three different ways to discuss the stability
and the order of a focus, and to study the bifurcation problem of limit cycles near a
focus are introduced. The relationships among these methods are also given. Ana-
lytical methods to study Hopf bifurcation of Liénard systems are presented, followed
by interesting applications to some Liénard systems of special form and to general
quadratic systems. The degenerate Hopf bifurcation near an elementary center is
particularly studied by using the coefficients of the expansion of the first order Mel-
nikov function at the center. The general form of Z, equivariant systems on the
plane is introduced and classified.

Chapter three concerns with general perturbations of Hamiltonian systems, or
near-Hamiltonian systems for short. The notion of cyclicity of a near-Hamiltonian
system with multiple parameters at a center, a periodic orbit or a homoclinic loop
are defined, and a general method to find lower or upper bound of these cyclicities
is established. A Hamiltonian system will have a nilpotent critical point when at
least two singular points meet together. For example, an elementary center and
a hyperbolic saddle become a cusp when they meet together. A nilpotent critical
point of a Hamiltonian system could be a cusp, nilpotent center or nilpotent saddle.
A cusp or nilpotent saddle can be located on a homoclinic or heteroclinic loop. A
limit cycle, under perturbation, may appear in a neighborhood of a nilpotent center
or a homoclinic or heteroclinic loop with a cusp or nilpotent saddle. The problem
of limit cycle bifurcation is studied in detail by perturbing a nilpotent center or a
homoclinic or heteroclinic loop with a cusp or nilpotent saddle. The main idea is
also to make understand the analytical property of the first order Melnikov function
at the corresponding Hamiltonian value.

As we knew, in Hopf bifurcation a limit cycle is created from a weak focus when
the focus changes its stability. This idea can be developed to homoclinic bifurcation.
That is to say, limit cycles can be found by perturbing and changing the stability
of a homoclinic loop. For the purpose, the problem of determining the stability of
a homoclinic loop needs to be solved. The same method can also be used to find
limit cycles in a neighborhood of a heteroclinic loop with two saddles. Chapter
four provides a general theory of homoclinic bifurcation, giving a way to solve these
problems. Some sufficient conditions are provided for the existence of multiple limit
cycles near a homoclinic, double homoclinic or heteroclinic loop, or even some types
of compound loop consisting of homoclinic and heteroclinic orbits.

In the last chapter, chapter 5, an interesting application of bifurcation methods
is presented to general polynomial systems on the plane. Based on the results of
some polynomial systems with degrees 3, 4, 5 and 6, a lower bound of the maximal
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number of limit cycles is obtained for all polynomial systems of degree greater
than 6.

This book has been used for three years in my class of graduate students as a
text book of the course Bifurcation Theory of Limit Cycles so far. They found and
corrected mistakes during their study. I am grateful to all of them. I especially
thank Dr. Yang Junmin who helped me make computations of many examples and
as well as all of the figures in the book.

Han Maoan
August, 2012
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Chapter 1
Limit Cycle and Its Perturbations

1.1 Basic notations and facts

Consider a planar system defined on a region G C R? of the form

z = f(x), (1.1.1)

where f : G — R? is a C” function, 7 > 1. Then for any point 2o € G (1.1.1) has a
unique solution ¢(t,zo) satisfying (0, o) = zo. Let p*(zo) = @(t,z0). The family
of the transformations ¢' : G — R? satisfies the following properties

(i) ¢° = Id;

(i) p+* = ¢ o p°.
The function ¢ is called the flow generated by (1.1.1) or by the vector field f. Let
I(zo) denote the maximal interval of definition of ¢(t,zp) in t. If zop € G is such
that (¢, zo) is constant for all ¢t € I(zg), then f(xp) = 0. In this case, z¢ is called
a singular point of (1.1.1). A point that is not singular is called a regular point.

For any regular point zg € G, the solution (¢, zo) determines two planar curves
as follows

7+(IU) = {(p(t,m()) ite I(l‘o),t 2 0}, ’Y—(‘TO) = {go(t,:co) ite I(:E()),t < 0}’
which are called the positive, negative orbit of (1.1.1) through z respectively. The
union y(zo) = v (zo) Uy~ (o) is called the orbit of (1.1.1) through zo. The theorem
about the existence and uniqueness of solutions ensures that there is one and only
one orbit through any point in G. Thus, it is easy to prove that any different orbits
do not intersect each other. A periodic orbit of (1.1.1) is an orbit that is a closed
curve. The minimal positive number satisfying ¢(T', zo) = zo is said to be the period
of the periodic orbit y(zp). Obviously, y(zo) is a periodic orbit of period T if and
only if the corresponding representation (t,zg) is a periodic solution of the same
period.

Definition 1.1.1 A periodic orbit of (1.1.1) is called a limit cycle if it is the
only periodic orbit in a neighborhood of it. In other words, a limit cycle is an isolated
periodic orbit in the set of all periodic orbits.

Now let us assume that (1.1.1) has a limit cycle L : z = u(t),0 < ¢t < T.
Since (1.1.1) is autonomous, for any given point p € L we may suppose p = u(0),
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and hence, u(t) = ¢(t,p). Further, for definiteness, let L be oriented clockwise.
Introduce a unit vector below
1

%= 50

Then there exists a cross section [ of (1.1.1) which passes through p and is parallel
to Zp. Clearly, a point o € [ near p can be written as g = p + aZy with a =
(o — p)TZ() € R small.

Lemma 1.1.1  There exist a constant € > 0 and C" functions P and 7 :
(—e,e) — R with P(0) =0 and 7(0) = T such that

(—fa(p), A1(p)"-

p(t(a),p+aZo) =p+ Pla)Zp€l, |a|<e. (1.1.2)
Proof Define Q(t,a) = [f(p)]T(¢(t,p + aZo) — p). We have

Q(T,0) =0, Q(T,0)=|f(p)*> 0.

Note that @ is C” for (t,a) near (T,0). The implicit function theorem implies that
a C" function 7(a) = T + O(a) exists satisfying

Q(r(a),a) =0 or [f(P)]"(w(r(a),p+aZo) - p) =0.

It follows that the vector ¢(7(a),p + aZy) — p is parallel to Z;. Hence, it can be
rewritten as ¢(7(a),p + aZy) — p = P(a)Zp, where

P(a) = Zg (¢(7(a),p + aZo) — p). (1.1.3)

It is obvious that P € C for |a| small with P(0) = 0. This ends the proof.

The above proof tells us that the function 7 is the time of the first return to [.
By Definition 1.1.1, the periodic orbit L is a limit cycle if and only if P(a) # a for
|a| > 0 sufficiently small.

Definition 1.1.2 The function P : (—¢,e) — R defined by (1.1.2) is called a
Poincaré map or return map of (1.1.1) at p € L.

For convenience, we sometimes use the notation P : | — [.

Definition 1.1.3 The limit cycle L is said to be outer stable (outer unstable)
if for a > 0 sufficiently small,

a(P(a) —a) < 0(> 0).

The limit cycle L is said to be inner stable (inner unstable) if the inequality above
holds for —a > 0 sufficiently small. A limit cycle is called stable if it is both inner
and outer stable. A limit cycle is called unstable if it is not stable.

For example, if L is stable, then the orbits near it behave like the phase portrait
as shown in Figure 1.1.1.
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Figure 1.1.1 Behavior of a stable limit cycle

Let P*(a) denote the kth iterate of a under P. It is evident that {P*(a)} is
monotonic in k and P¥(a) > 0(< 0) for a > 0(< 0). Thus, it is easy to see that L
is outer stable if and only if P¥(a) — 0 as k — oo for all a > 0 sufficiently small.
Similar conclusions hold for outer unstable, inner stable and inner unstable cases.

Remark 1.1.1 If the limit cycle L is oriented anti-clockwise we can define its
stability in a similar manner by using the Poincaré map P defined by (1.1.2). For
instance, it is said to be inner stable (inner unstable) if a(P(a) — a) < 0(> 0) for
a > 0 sufficiently small. .

Definition 1.1.4 The limit cycle L is said to be hyperbolic or of multiplicity
one if P'(0) # 1. It is said to have multiplicity k, 2 < k < r, if P'(0) = 1, PY)(0) =
0,j=2,---, k=1, P®(0) £0.

By Definition 1.1.3, one can see that L is stable (unstable) if |P'(0)| <1 (> 1).

Example 1.1.1 Consider a system given by

1‘.1 =T — &3 — 1‘1(.’17% + 1‘%),

. 1.1.
To =1 +IL‘2—.’E2(:L'¥+£L‘%). ( 4)

The system has the form
F=r(l1-r%), 6=1

in polar coordinates (r,6) with £ = (r cosf,rsinf). Thus, one can find (1.1.4) has
a flow of the form

@(t, z0) = r(t)(cos B(t),sin B(t))T, (1.1.5)

where
r(t) =ro(rd + (1 —r2)e %)%, 6(t) =t + 6o,

Ty = rg(coseo,sinOO)T, o >0, 0<6y<2m

For p = (1,0)T, we have a periodic orbit L = {(z1,22)T|2z? + 2% = 1} which has a
representation

L: z=(tp)=(cost,sint)T, 0<t<2n,
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with Zg = (=1,0)T. Then p+aZy = (1 —a,0)T. Hence, 2o = p + aZ if and only if
r0=1—a, 90=0.
Taking | = {(z1,0)T|z; > 0}. Then noting that 7(0) = 2, by (1.1.5) we have
o(1(a),p + aZp) €l if and only if 7(a) = 2x for a < 1. Therefore,
o(t(a),p +aZp) = (1 —a)[(1 — a)? + (2a — a?)e "]~ (I,O)T.
It follows from (1.1.3) that

P(a)=1—-(1-a)[(1 —a)® + (2a — a®)e ¥~ 2
= ae™ '™ + 0(a?)

for |a| small. By Definition 1.1.3, the limit cycle L is stable.
Next, we give formulas for P’'(0) and P”(0). For the purpose, let

v(0) = % = (0),02(0))%,  Z(6) = (~va(6),1:(8)",

and introduce a transformation of coordinates of the form
z=u@)+Z0)», 0<6<LT, |b<e. (1.1.6)

Lemma 1.1.2  The transformation (1.1.6) carries (1.1.1) into the system

dé db
E =1+ gl(ev b)a a - A(G)b +92(0’ b), (117)

where

A(6) = Z7(6) fz(u(6)) Z(0) = trfo(u(8)) — % In|f(u(6)),
91(6,b) = h(6,b)[f(u(6) + Z(6)b) — f(u(B))] — h(6,b)Z’(0)b,
92(8,b) = ZT(8)[f (u(8) + Z(0)b) — f(u(6)) — f=(u(6))Z()b],
h(8,b) = (If (w(®))] +vT(6)Z'(6)b) 12T (6),
and trf;(u(0)) denotes the trace of the matriz fr(u(@)), which is called the divergence

of the vector field f evaluated at u(6).
Proof By (1.1.6) and (1.1.1) we have

(w'+2Z b)— +Zfi£ = f(u+ Zb). (1.1.8)

db
In order to obtain (1.1.7) we need to solve %g and 1 from (1.1.8). First, multiplying

(1.1.8) by vT from the left-hand side and using

vTZ =0, v"f(u)=v"d = || =|f(u)],
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we can obtain

%g = [If ()| +vT 260" f(u + Zb) = h(B,b)f (u + Zb).

Note that

h(6,b) f(w) = h(6,b)[f(u) + Z'b] — h(6,b)2Z'b = 1 — h(6,b)Z'b.
It follows that

h(8,b)f(u+ Zb) = h(8,b)[f(u + Zb) — f(u)] — h(6,b)Z'b+ 1.

Then the first equation in (1.1.7) follows.
Now multiplying (1.1.8) by ZT from the left and using

Z%2=1, ZTf(u)=0, Z"Z' =vv|+vovh = —;—(lv|2)' =0,

we obtain b
5 = 2" (u+2Zb) = f(u) = fa(u) 2] + Z7 f2(u) 2.

By writing f and Z in their components it is direct to prove that

202 = trfafu) — 5 In )]

Then the second equation of (1.1.7) follows. This finishes the proof.
Set

B(9) = [fo(u+ Zb)}ils=0, C(8) = v"[fo(u)Z — Z'(0))], (1.1.9)
and Rty - A@+020.0)
' - 1 =f g1 (07 b) )
Then by Lemma 1.1.2, we can write
R(6,b) = A()b + % [ZTBZ - %} b+ 0(b) = A(B)b + %Al(O)b2 +0(b%).
(1.1.10)
For |b| small we have from (1.1.7)
db
5= R(8,b) (1.1.11)

which is a T-periodic equation. From Lemma 1.1.2 we know that the function R is
C™lin (0,b) and CT in b. Let b(#, a) denote the solution of (1.1.11) with b(0,a) = a.
Then b(T, a) defines a function of @ which is called a Poincaré map of (1.1.11). For
the relationship of Poincaré maps of (1.1.1) and (1.1.11) we have
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Lemma 1.1.3 P(a) =b(T,a).
Proof Consider the equation

dé
5 = 1+ ¢1(0,b(8,q)).
It has a unique solution 8 = 6(t,a) satisfying 6(0,a) = 0 and 6(¢,0) = ¢t. From

a6
"ot
the implicit function theorem a unique function 7(a) = T' + O(a) exists such that
0(7,a)=T.
For 2o = u(0) + Z(0)a, we have by (1.1.6)

w(t,zo) = u(B(t,a)) + Z(6(t,a))b(6(t, a),a).

(1.1.10) it implies b(#,0) = 0. This yields 6(T,0) = T, —(T,0) = 1. Hence, by

In particular,
o(T,zo) =u(T)+ Z(T)b(T,a) = u(0) + Z(0)b(T,a) = p+ Zob(T,a) € .

Thus, it follows from Lemma 1.1.1 that 7 = 7 and P(a) = b(T, a).
The proof is completed.
For |a| small we can write

b(8,a) = bi(0)a + ba(F)a® + O(a®),
where b;(0) = 1,b2(0) = 0. By (1.1.10) and (1.1.11) one can obtain
b = Aby, by = Aby + %Albf

which give

0 ]
b1(0) =exp/0 A(s)ds, ba(0) =b1(0)/0 %Al(s)bl (s)ds.

Then by Lemma 1.1.3 we have

T T
P'(0)=b,(T) = exp/0 A(s)ds = exp/0 trfz (u(t))dt,

"

T
P’ (0)=2by(T) = by(T) /0 Av(8)by (5)ds.

Thus, noting (1.1.10) we obtain the following theorem.
Theorem 1.1.1  Suppose P is a Poincaré map of (1.1.1) at p € L. Then

(i) P'(0) = expf;divfdt, divf = trf,,

T
@) () = PO) [ o408 [ 27050z - 2050 0
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In particular, L is stable (unstable) if I(L) = f divfdt < 0(> 0).
L

We remark that Theorem 1.1.1 remains true in the case of counter clockwise
orientation of L.

Example 1.1.2 Consider the quadratic system

& =—y(l+ecx) - (2% +9> - 1),
y=z(l+cz), 0<c<l.

This system has the circle L : 22 4+ y? = 1 as its limit cycle. We claim that the cycle
is unstable.

In fact, we have

2 2
I(L)=}{(~2x—cy)dt=?{( ee 2 ) // Jeaedy
L t\l+cx 1+cz e24y2<a (L+ (1+ cx)?

Example 1.1.3 The system

&= —y— (e +y% - 12,
y=z—y(z® +y*— 1)

has a unique limit cycle given by L : (z,y) = (cost,sint),0 < t < 2. For the system,
it is easy to see that v(f) = (—siné, cosf)T, Z(#) = (—cosf, —sind)T. By Lemma 1.1.2
and (1.1.9) we then have

8cos2f  8sinfcosf
A(6) =0, B(6)= ( 8sinfcosfd  8sin6 )

Thus from Theorem 1.1.1 it follows P’(0) = 1, P”(0) = 16x. This shows that L
is a limit cycle of multiplicity 2.

From (1.1.9) and formulas for P’(0) and P” (0) in Theorem 1.1.1 the derivatives
P'(0) and P"(0) are independent of the choice of the cross section I. This fact
suggests that the stability and the multiplicity of a limit cycle should have the same
property. Below we will prove this in detail even if the cross section [ is taken as a
C" smooth curve.

1.2 Further discussion on property of limit cycles

Let L be a limit cycle of (1.1.1) as before and let {; be a C" curve which has an
intersection point p; € L with L and is not tangent to L at p;. Then it can be
represented as

h:z=p1+g(a), q(0)=0, det(f(p1),¢'(0))>0,
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where g : (—e,e) — R? is C" for a constant ¢ > 0. Note that det(f(p1),q'(0)) =
q'(0) - (= f2(p1), f1(p1))T. The condition det(f(pi),q’(0)) > 0 implies that the point
p1 + g(a) is outside L if and only if a > 0.

Let G(t,b,a) = p(t,p1 + a(@)) — [p1 + g(b)]. Then we have

3Z,Gb) |t=T,b=a=0 = det(f(p1), —¢'(0)) #0.

det

Hence, in the same way as Lemma 1.1.1 we can prove that there exist two C”
functions
P],T]i(—E,E)_’R, P1(0)=07 Tl(O):T

such that G(m(a), Pi(a),a) =0, or

p(r1(a), ;1 +q(a)) = p1 + q(Pi(a)) € L1 (1.2.1)

This yields another Poincaré map P, : (—e,e) — R.

Lemma 1.2.1 Let P and P, be two Poincaré maps defined by (1.1.2) and
(1.2.1) respectively. Then there exists a C" function hy : (—e,e) — R with hy(0) =
0,h}(0) > 0 such that hy o P = Py o h;.

Proof Since p = u(0) we can suppose p; = u(t;) for some ¢, € [0,7"). Similar
to Lemma 1.1.1 again, there exist two C" functions h; and 7%, both from (—¢,¢) to
R, with h;(0) = 0 and 7*(0) = ¢; such that

¢(t*(a),p + aZy) = p1 +q(h1(a)) € L. (1.2.2)

See Figure 1.2.1.

Figure 1.2.1 Two Poincaré maps

Let zo = p+ aZp,z1 = ¢(7*(a), Zo), z2 = ¢(7(a), zo). By (1.2.2) and (1.1.2) we
have z; = p; +¢(a1),a1 = hi(a) and z3 = p+ P(a)Zy. Hence, by (1.2.1) and (1.2.2)
we have

p(ri(a1),z1) = p1 +q(Pi(ar)), @(7"(P(a)),z2) = p1 +qlaz), a2z = hi(P(a)).
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On the other hand, by the flow property of ¢ we have

z3=p(1 (@), 21) =¢(11(a1) + 77 (a), 20) = (7" (P(a)) + 7(a), z0) = (7" (P(a)), 22),

which, together with the above, follows that ¢(P;(a1)) = q(a2) or as = Pi(aq).
Hence hy o P = Py o h;.

It only needs to prove h{(0) > 0. Let a > 0. Introduce one more cross section
below

U:z=u(t1))+Z(t1)a, 0<a<e.
Let 71(a) = t; + O(a) be such that 8(71,a) = t;. By (1.1.6) we have

T, = ¢(T1,20) = u(ty) + Z(t1)b(t1,a) € .
Then b(t1,a) = |p1T1|. By the proof of Lemma 1.1.3,

ab t
—(t1,0) = ex A(s)ds > 0.
6(1( 1 ) Y o ( )

Consider the triangle formed by points p;,z; and Z;. There exists a point z* on
the orbital arc z1Z; such that f(z*) is parallel to the side z;Z;. Since the arc :c/lf\l
approaches p; as a — 0 we have z* — py, f(z*) — f(p1) as a — 0. Hence, if we let
a; denote the angle between sides p1Z; and Z;1z;, and as the angle between sides

T .
121 and Tz, then we have a1 — —, a2 — ag as a — 0, where ag € (0, = | is the
p 2 2

angle between the vectors f(p;) and ¢’(0). That is, g is the angle between L and
ly at p;. By the Sine theorem, it follows

P1T1 P11 sina;
P21l _ iz @) = Sy, 0) = —
sinap  sinag sinas sinag

exp/0 A(s)ds(14-0(a)).
On the other hand, g(h;(a)) = ¢’(0)R}(0)a + O(a?) which gives
lg(h1(a))| = |¢'(0)| - [h}(0)|a+ O(a®), a>0.

Hence, we obtain

ta

1
O fsinag P J, Ae)ds #0

|h1(0)] =

Noting that h;(a) > 0 for a > 0 we have h’(0) > 0. The proof is completed.
Corollary 1.2.1  The stability and the multiplicity of the limit cycle L are
independent of the choice of cross sections.
Proof By Lemma 1.2.1 we have

hi(@)[P(a) — a] = Pi(h1(a)) — hi(a), (1.2.3)



