Experiments with MATLAB

MATLABZ A2 : YmIESLRL
(ZRXHR)

Cleve Moler

MathWorks MATLAB

MR M S KRG % I A

BEIHANG UNIVERSITY PRESS

Experiments with MATLAB

MATLAB Z & : mIEL B
(& hR)

Cleve Moler

Vao B 8 BB DY §2

MRS EREIEZS EF:01-2013-5836
Copyright © 2012 Cleve Moler.
All rights reserved. No part of this book may be reproduced. stored, or transmitted in any manner without

the written permission of the author. For more information, contact moler(@mathworks. com.

The programs described in this book have been included for their instructional value. These programs have
been tested with care, but are not guaranteed for any particular purpose. The author does not offer any
warranties or representations.nor does he accept any liabilities with respect to the use of the programs.
These programs should not be relied on as the sole basis to solve a problem whose incorrect solution could

result in injury to person or property.
Mariag is a registered trademark of MathWorks, Inc.

For more information about relevant MathWorks policies, see:

http://www. mathworks. com/company/aboutus/policies statements

Electronic edition published by MathWorks. Inc.

http://www.mathworks. com/moler

BB EM S B (CIP) & 17

MATLAB Z4& : 4ifit9: 8 = Experiments with
MATLAB: #3 / (%) 54 (Moler, C.B.) #. —Jb gt
oAb AU S AL R RS R . 2013, 12

ISBN 978 -7 -5124-1229 -3

[. OM- 1. O&-- . OMatlab 4 — #F it
—#HM L V. OTP317

b [AR B CIP B A% 7 (2013) 45 187632 &

MUALER B , B

Experiments with MATLAB
MATLAB Z & : 2 LB
(EXhR)
Cleve Moler
TAERE BT
* §
b FTALE AR K F AL B AR Z AT
Jb s B X F PR % 37 S (ME4s 100191) http://www. buaapress. com. cn
KAT AL - (010082317024 {£H (010182328026
{546 goodtextbook(@126. com MBI HL i : (010)82316936
M 1 E R AT B2 i) B 2 A 28 4
JEAC.TIOX 1 000 1716 EPgK.18.5 F4.484 TF
20134E 12 HSS 1 AR 2013 4F 12 A% 1 KEDR Ep%c.2 000 Mt
ISBN 978 -7 -5124-1229-3 &f:68.00 JC

27 A A7 (B U 0T L i 0 A 2 AR () 0 SR A R AT R R R, B R L (010082317024

Preface

Welcome to Ezperiments with MATLAB. This is not a conventional book. It is
currently available only via the Internet, at no charge, from

http://www.mathworks.com/moler
There may eventually be a hardcopy edition, but not right away*.

Although MATLAB is now a full-fledged Technical Computing Environment, it s-
tarted in the late 1970s as a simple “Matrix Laboratory”. We want to build on
this laboratory tradition by describing a series of experiments involving applied
mathematics, technical computing, and MATLAB programming.

We expect that you already know something about high school level material in
geometry, algebra, and trigonometry. We will introduce ideas from calculus, ma-
trix theory, and ordinary differential equations, but we do not assume that you
have already taken courses in the subjects. In fact, these experiments are useful
supplements to such courses.

We also expect that you have some experience with computers, perhaps with word
processors or spread sheets. If you know something about programming in languages
like C or Java, that will be helpful, but not required. We will introduce MATLAB by
way of examples. Many of the experiments involve understanding and modifying
MATLAB scripts and functions that we have already written.

You should have access to MATLAB and to our exm toolbox, the collection of pro-
grams and data that are described in Ezperiments with MATLAB. We hope you will
not only use these programs, but will read them, understand them, modify them,
and improve them. The exm toolbox is the apparatus in our “Laboratory”.

You will want to have MATLAB handy. For information about the Student Version,
see

http://www.mathworks.com/academia/student_version
For an introduction to the mechanics of using MATLAB, see the videos at

*This preface was from the original internet version. The current hardcopy version is now
brought to the readers, authorized by Cleve Moler.

ii Preface

http://www.mathworks.com/academia/student_version/start.html
For documentation, including “Getting Started”, see
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html

For user contributed programs, programming contests, and links into the world-wide
MATLAB community, check out

http://www.mathworks.com/matlabcentral

To get started, download the exm toolbox, use pathtool to add exm to the MATLAB
path, and run

exmgui

This should generate Figure 1. You can click the icons to preview some of the

experiments.
:_. . \{
* : . : . . Ly f \
4 ; b) NP
clockex lifex rabbits
A\b
pagerank wiggle t_puzzle tictactoe backslash
l ,///;
,//
predprey mandelbrot durerperm waterwave expgui
116 3
187 { LN — — s
[59201 A | ~ |
18, | [
490201 \), A i |/ L
BOnG R Sy g i > -
P38 I 130 — | 1N /|
1 492 e
‘ sudoku orbits B pianoex golden_spiral

Figure 1. exmgui provides a starting point for some of the experiments.

You will want to make frequent use of the MATLAB help and documentation facili-
ties. To quickly learn how to use the command or function named xxx, enter

help xxx

Cleve Moler. Experiments with MATLAB iii

For more extensive information about xxx, use
doc xxx

We hope you will find the experiments interesting, and that you will learn how to
use MATLAB along the way. Each chapter concludes with a “Recap” section that is
actually an executable MATLAB program. For example, you can review the Magic
Squares chapter by entering

magic_recap
Better yet, enter
edit magic_recap

and run the program cell-by-cell by simultaneously pressing the Ctrl-Shift-Enter
keys.

A fairly new MATLAB facility is the publish command. You can get a nicely
formatted web page about magic_recap with

publish magic_recap

If you want to concentrate on learning MATLAB, make sure you read, run, and
understand the recaps.

Cleve Moler
Natick, MA and Santa Fe, NM
September 4, 2013

Preface
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

Chapter 17

Contents

Iteration
Fibonacci Numbers
Calendars and Clocks
Matrices
Linear Equations
Fractal Fern
Google PageRank
Exponential Function
T Puzzle
Magic Squares
TicTacToe Magic
Game of Life
Mandelbrot Set

Sudoku

Ordinary Differential Equations

Predator-Prey Model

Orbits

19

37

49

67

81

91

105

121

131

149

159

171

191

207

221

229

vi Contents

Chapter 18 Shallow Water Equations 249
Chapter 19 Morse Code 255

Chapter 20 Music 271

Chapter 1
Iteration

Iteration is a key element in much of technical computation. Examples involving the
Golden Ratio introduce the MATLAB assignment statement, for and while loops,
and the plot function.

Start by picking a number, any number. Enter it into MATLAB by typing
X = your number

This is a MATLAB assignment statement. The number you chose is stored in the
variable x for later use. For example, if you start with

x=3
MATLAB responds with

X =
3

Next, enter this statement
x = sqrt(1 + x)

The abbreviation sqrt is the MATLAB name for the square root function. The
quantity on the right, v/1 + z, is computed and the result stored back in the variable
x, overriding the previous value of x.

Somewhere on your computer keyboard, probably in the lower right corner, you
should be able to find four arrow keys. These are the command line editing keys.
The up-arrow key allows you to recall earlier commands, including commands from

*Copyright © 2012 Cleve Moler
MATLAB is a registered trademark of MathWorks, Inc.

2 Chapter 1. Iteration

previous sessions, and the other arrow keys allow you to revise these commands. Use
the up-arrow key, followed by the Enter or Return key, to iterate, or repeatedly
execute, this statement:

x = sqrt(1l + x)

Here is what you get when you start with x = 3.

X =

3
X =

2
x =

1.7321
x =

1.6529
x =

1.6288
x =

1.6213
X =

1.6191
X =

1.6184
X =

1.6181
X =

1.6181
X =

1.6180
X =

1.6180

These values are 3, v1+3, vV1++v1+3, {/1++/1++/1+3, and so on. After
10 steps, the value printed remains constant at 1.6180. Try several other starting
values. Try it on a calculator if you have one. You should find that no matter where
you start, you will always reach 1.6180 in about 10 steps. (Maybe a few more will
be required if you have a very large starting value.)

MATLAB is doing these computations to accuracy of about 16 decimal digits, but
is displaying only 5. You can see more digits by first entering

format long

and repeating the experiment. Here are the beginning and end of 30 steps starting
at ¢ =3.

X =

Cleve Moler. Experiments with MATLAB 3

X =
2

X =
1.732050807568877

X =
1.652891650281070

X =
1.618033988749897

X =
1.618033988749895

X =

1.618033988749895

After about 30 or so steps, the value that is printed doesn’t change any more.
You have computed one of the most famous numbers in mathematics, ¢, the
Golden Ratio.

In MATLAB, and most other programming languages, the equals sign is the assign-
ment operator. It says compute the value on the right and store it in the variable
on the left. So, the statement

x = sqrt(1 + x)
takes the current value of x, computes sqrt (1+x), and stores the result back in x.

In mathematics, the equals sign has a different meaning.
z=vV1+z

is an equation. A solution to such an equation is known as a fized point. (Be careful
not to confuse the mathematical usage of fized point with the computer arithmetic
usage of fized point.)

The function f(z) = /1 + z has exactly one fixed point. The best way to find the
value of the fixed point is to avoid computers all together and solve the equation us-
ing the quadratic formula. Take a look at the hand calculation shown in Figure 1.1.
The positive root of the quadratic equation is the Golden Ratio:

1+5
b=

You can have MATLAB compute ¢ directly using the statement

phi = (1 + sqrt(5))/2

With format long, this produces the same value we obtained with the fixed point
iteration,

phi =
1.618033988749895

4 Chapter 1. Iteration

X= \/h*)(
Xi= | +X
Xt-X-|=0

X= 1T

(P: l;r——_i

Figure 1.1. Compute the fized point by hand.

Figure 1.2 is our first example of MATLAB graphics. It shows the intersection of
the graphs of y =z and y = V1 + z.

4

35

3

25

g4 0 1 2 3 4

Figure 1.2. A fized point at ¢ = 1.6180.

The statement
x = -1:.02:4;

generates a vector x containing the numbers from -1 to 4 in steps of .02. The
statements

yl = x;
y2 = sqrt(1+x);
plot(x,yl,’-’,x,y2,’-’,phi,phi,’0?)

produce a figure that has three components. The first two components are graphs
of z and v/1 + z. The ’-’ argument tells the plot function to draw solid lines. The
last component in the plot is a single point with both coordinates equal to ¢. The
>0’ tells the plot function to draw a circle.

Cleve Moler. Experiments with MATLAB 5

The MATLAB plot function has many variations, including specifying other colors
and line types. You can see some of the possibilities with

help plot

The Golden Ratio shows up in many places in mathematics; we’ll see several in
this book. The Golden Ratio gets its name from the golden rectangle, shown in

Figure 1.3.
¢

1
|
|
|
|
|
|
|
|
|
!
|
|
|
|
I

p—1

Figure 1.3. The golden rectangle.

The golden rectangle has the property that removing a square leaves a smaller
rectangle with the same shape. Equating the aspect ratios of the rectangles gives a
defining equation for ¢:

1 ¢-1

¢ 1
Multiplying both sides of this equation by ¢ produces the same quadratic polynomial
equation that we obtained from our fixed point iteration:

> —¢p—1=0.

The up-arrow key is a convenient way to repeatedly execute a single statement, or
several statements (separated by commas or semicolons) on a single line. Two more
powerful constructs are the for loop and the while loop. A for loop executes a
block of code a prescribed number of times.

x =3
for k = 1:31

x = sqrt(1l + x)
end

produces 32 lines of output, 1 from the initial statement and 1 more each time
through the loop.

A while loop executes a block of code an unknown number of times. Termination
is controlled by a logical expression, which evaluates to true or false. Here is the

6 Chapter 1. Iteration

simplest while loop for our fixed point iteration.

x=3

while x ~= sqrt(1+x)
x = sqrt(1+x)

end

This produces the same 32 lines of output as the for loop. However, this code is
open to criticism for two reasons. The first possible criticism involves the termi-
nation condition. The expression x ~“= sqrt(1+x) is the MATLAB way of writing
z # /1 + z. With exact arithmetic, x would never be exactly equal to sqrt (1+x),
the condition would always be true, and the loop would run forever.

Like most technical computing environments, MATLAB does not do arithmetic ex-
actly. To economize on both computer time and computer memory, MATLAB uses
floating point arithmetic. Eventually our program produces a value of x for which
the floating point numbers x and sqrt (1+x) are exactly equal and the loop termi-
nates. Expecting exact equality of two floating point numbers is a delicate matter.
It works OK in this particular situation, but may not work with more complicated
computations.

The second possible criticism of our simple while loop is that it is inefficient. It
evaluates sqrt (1+x) twice each time through the loop. Here is a more complicated
version of the while loop that avoids both criticisms.

x =3

y-="0;

while abs(x-y) > eps(x)
y = x;
x = sqrt(1+x)

end

The semicolons at the ends of the assignment statements involving y indicate that
no printed output should result. The quantity eps(x) is the spacing of the floating
point numbers near x. Mathematically, the Greek letter €, or epsilon, often rep-
resents a “small” quantity. This version of the loop requires only one square root
calculation per iteration, but that is overshadowed by the added complexity of the
code. Both while loops require about the same execution time. In this situation, I
prefer the first while loop because it is easier to read and understand.

Help and Doc

MATLAB has extensive on-line documentation. Statements like

help sqrt
help for

provide brief descriptions of commands and functions. Statements like

Cleve Moler. Experiments with MATLAB 7

doc sqgrt
doc for

provide more extensive documentation in a separate window.

One obscure, but very important, help entry is about the various punctuation
marks and special characters used by MATLAB. Take a look now at

help punct
doc punct

You will probably want to return to this information as you learn more about
MATLAB.

Numbers

Numbers are formed from the digits 0 through 9, an optional decimal point, a
leading + or - sign, an optional e followed by an integer for a power of 10 scaling,
and an optional i or j for the imaginary part of a complex number. MATLAB also
knows the value of 7. Here are some examples of numbers.

42

9.6397238
6.0221415e23
-3+4i

pi

Assignment Statements and Names

A simple assignment statement consists of a name, an equal sign (=), and a number.
The names of variables, functions and commands are formed by a letter, followed
by any number of uppercase and lowercase letters, digits and underscores. Single
character names, like x and N, and anglicized Greek letters, like pi and phi, are
often used to reflect underlying mathematical notation. Nonmathematical programs
usually employ long variable names. Underscores and a convention known as camel
casing are used to create variable names out of several words.

x = 42

phi = (1+sqrt(5))/2
Avogadros_constant = 6.0221415e23
camelCaseComplexNumber = -3+4i

8 Chapter 1. Iteration

Expressions

Power is denoted by ~ and has precedence over all other arithmetic operations.
Multiplication and division are denoted by *, /, and \ and have precedence over
addition and subtraction, Addition and subtraction are denoted by + and - and
have lowest precedence. Operations with equal precedence are evaluated left to
right. Parentheses delineate subexpressions that are evaluated first. Blanks help
readability, but have no effect on precedence.

All of the following expressions have the same value. If you don’t already recognize
this value, you can use Google to check its importance in popular culture.

3*%4 + 5%6

3 *x 445 x 6
2%(3 + 4)*3
-274 + 10%29/5
3\126

52-8-2

Recap

%h Iteration Chapter Recap

% This is an executable program that illustrates the statements
% introduced in the Iteration chapter of "Experiments in MATLAB".
% You can run it by entering the command

h

% iteration_recap
% Better yet, enter
% edit iteration_recap

% and run the program cell-by-cell by simultaneously
% pressing the Ctrl-Shift-Enter keys.

% Enter

A

% publish iteration_recap
h

% to see a formatted report.

% Copyright 2012 Cleve Moler

% Copyright 2012 The MathWorks, Inc.
%% Help and Documentation

% help punct

Cleve Moler. Experiments with MATLAB

% doc punct

%% Format
format short
100/81
format long
100/81

format short
format compact

%% Names and assignment statements
x = 42
phi = (1+sqrt(5))/2
Avogadros_constant = 6.0221415e23
camelCaseComplexNumber = -3+4i

%% Expressions
3x4 + 5%6
3 % 445 * 6
2%(3 + 4)*3
-274 + 10%29/5
3\126
52-8-2

%% Iteration
% Use the up-arrow key to repeatedly execute
x = sqrt(1+x)
x = sqrt(1+x)
x = sqrt(1+x)
x = sqrt(1+x)

%% For loop
x = 42
for k = 1:12
x = sqrt(1+x);
disp(x)
end

%% While loop
x = 42;
k=1;
while abs(x-sqrt(i+x)) > be-5
x = sqrt(1+x);
k = k+1;
end

