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The advent of semiconductor structures whose characteristic dimensions are smaller than
the mean free path of carriers has led to the development of novel devices and given
rise to many advances in our theoretical understanding of these mesoscopic systems or
nanostructures. This book reviews the results of experimental research into mesoscopic
devices and develops a detailed theoretical framework for understanding their behavior.

The authors begin by discussing the key observable phenomena in nanostructures, in-
cluding phase interference and weak localization. They then describe quantum confined
systems, transmission in nanostructures, quantum dots, and single electron phenomena.
Separate chapters are devoted to interference in diffusive transport and temperature decay
of fluctuations, and the book concludes with a chapter on non-equilibrium transport and
nanodevices. Throughout, the authors interweave experimental results with the appropriate
theoretical formalism.

The book will be of great interest to graduate students taking courses in mesoscopic
physics or nanoelectronics, as well as to anyone working on semiconductor nanostructures
or the development of new ultrasmall devices.
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Preface

This book has grown out of our somewhat disorganized attempts to teach the physics and
electronics of mesoscopic devices over the past decade. Fortunately, these have evolved
into a more consistent approach, and the book tries to balance experiments and theory in
the current understanding of mesoscopic physics. Whenever possible, we attempt to first
introduce the important experimental results in this field followed by the relevant theoretical
approaches. The focus of the book is on electronic transport in nanostructure systems, and
therefore by necessity we have omitted many important aspects of nanostructures such as
their optical properties, or details of nanostructure fabrication. Due to length considerations,
many germane topics related to transport itself have not received full coverage, or have been
referred to by reference. Also, due to the enormity of the literature related to this field, we
have not included an exhaustive bibliography of nanostructure transport. Rather, we have
tried to refer the interested reader to comprehensive review articles and book chapters when
possible.

The Introduction of Chapter 1 gives a general overview of the important effects that
are observable in small systems that retain a degree of phase coherence. These are also
compared to the needs that one forsees in future small electron devices. Chapter 2 provides
a general introduction to quantum confined systems, and the nature of quasi-two-, quasi-
one- and quasi-zero-dimensional systems including their dielectric response and behavior
in the presence of an external magnetic field. It concludes with an overview of semi-classical
transport in quantum wells and quantum wires including the relevant scattering mechanisms
in quantum confined systems.

Chapter 3 begins with the general principle of quantum mechanical tunneling, and its his-
torical evolution towards present day resonant tunneling diodes. The concepts of quantum
mechanical flux, reflection, and transmission are introduced and applied towards under-
standing the characteristics of tunneling diodes. These concepts are then generalized to more
complicated quantum wave guide systems, which introduces the tunneling/transmission
connection upon which the Landauer formula is based. The concept of quantized conduc-
tance is introduced, and its connection to the experimentally observed conductance quan-
tization in quantum point contacts. This is then followed by an elaboration of simulation
techniques used for modeling wave guide structures and multi-terminal structures.

In Chapter 4, we focus exclusively on quantum dot structures beginning with their elec-
tronic structure, and then the experimental results and theoretical formalism related to single
electron effects in such structures such as Coulomb Blockade. This is followed by discus-
sion of more complicated systems of multiple quantum dots, and transport through such
structures.



X Preface

Chapter 5 begins to discuss the effects of weak localization and universal conduction
fluctuations, which are direct results of inhomogeneities and phase coherence in small
structures. First, the experiments and simple understanding are presented; then the more
formal treatment by Green's functions provides the detailed understanding that is necessary.
This chapter is closed by discussions of open quantum dot systems and the reinterpretation
of “universality” that is necessary for the theory.

Chapter 6 extends the above treatments to real temperatures, and begins the discussion of
how the phase breaking process, important for loss of coherence, occurs in these systems.
The temperature, or Matsubara, Green'’s functions are introduced in order to handle the
underlying physics for this process.

Finally, Chapter 7 discusses nonequilibrium transport in nanostructure under high bias
potentials. A review of the important experimental observations under nonequilibrium con-
ditions is given, followed by the introduction of the nonequilibrium, or real time, Green's

" functions, which provide the formal theoretical basis for treating transport in such systems.

Currently, we are teaching a two semester graduate sequence on the material contained in
the book. In the first course, which is suitable for first-year graduate students, the experiments
and simpler theory, such as that for tunneling, edge states, and the Landuer—Biittiker method,
are introduced. This covers parts of each of the chapters, but does not delve into the topic
of Green’s functions. Rather, the much more difficult treatment of Green’s functions is left
to the second course, which is intended for more serious-minded doctoral students. Even
here, the developments of the zero-temperature Green's functions in Chapter 6, followed by
the Matsubara Green'’s functions in Chapter 7 and the nonequilibrium (real-time) Green'’s
functions in Chapter 8, are all coupled closely to the experiments in mesoscopic devices.

In spite of the desire to consistently increase the level of difficulty and understanding as
one moves through the book, there remain some anomalies. We have chosen, for example, to
put the treatment of the lattice expansion and recursive Green’s functions in the chapter with
wave guide modal expansions, since these two quantities are closely coupled. Nevertheless,
the reader would be well served to go through Chapter S and its introduction of the Green'’s
functions prior to undertaking an in depth study of the recursive Green’s function. This,
of course, signals that topics have been grouped together in the chapters in a manner that
lies on their connection to one another in physics, rather than in a manner that would be
optimally chosen for a textbook. Nevertheless, we are convinced that one can use this book
in graduate coursework.
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1

Introduction

It is often said that nanostructures have become the system of choice for studying transport
over the past few years. What does this simple statement mean?

First, consider transport in large, macroscopic systems. Quite simply, for the past fourscore
years, emphasis in studies of transport has been on the Boltzmann transport equation and
its application to devices of one sort or another. The assumptions that are usually made for
studies are the following: (i) scattering processes are local and occur at a single point in
space; (ii) the scattering is instantaneous (local) in time; (iii) the scattering is very weak and
the fields are low, such that these two quantities form separate perturbations on the equilib-
rium system; (iv) the time scale is such that only events that are slow compared to the mean
free time between collisions are of interest. In short, one is dealing with structures in which
the potentials vary slowly on both the spatial scale of the electron thermal wavelength (to
be defined below) and the temporal scale of the scattering processes.

In contrast to the above situation, it has become possible in the last decade or so to make
structures (and devices) in which characteristic dimensions are actually smaller than the
appropriate mean free paths of interest. In GaAs/GaAlAs semiconductor heterostructures, it
is possible at low temperature to reach mobilities of 10% cm?/Vs, which leads to a (mobility)
mean free path on the order of 10 2m and an inelastic (or phase-breaking) mean free path
even longer. (By “phase-breaking” we mean decay of the energy or phase of the “wave
function” representing the carrier.) This means that transport in a regime in which the
Boltzmann equation is clearly invalid becomes easily accessible. Each of the assumptions
detailed above provides a factor that is neglected in the usual Boltzmann transport picture.
Structures (and devices) can readily be built with dimensions that are much smaller than
these dimensions, so new physical processes become important in the overall transport.
These devices have come to be called nanostructures, nanodevices, or mesoscopic devices,
depending upon the author. Perhaps the best description is that of a mesoscopic device, where
the prefix “meso-" is used to indicate structures that are large compared to the microscopic
(atomic) scale but small compared to the macroscopic scale upon which normal Boltzmann
transport theory has come to be applied.

A simple consideration illustrates some of the problems. If the basic semiconductor
material is doped to 10'® cm™3, then the mean distance between impurity atoms is 10 nm,
so that any discrete device size, say 0.1 um, spans a countably small number of impurity
atoms. That is, a cubic volume of 0.1 m on a side contains only 1000 atoms. These atoms
are not uniformly distributed in the material; instead they are randomly distributed with
large fluctuations in the actual concentration on this size scale. Again, the variance in the
actual number N in any volume (that is, the difference from one such volume to another) is
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roughly +/N, which in this example is about 32 atoms (or 3.3% of the doping). Since these
atoms often compose the main scattering center at low temperatures, the material is better
described as a highly conducting but disordered material, since the material is certainly not
uniform on the spatial scale of interest here. As the current lines distort to avoid locally
high densities of impurities, the current density becomes non-uniform spatially within the
material; this can be expected to lead to new effects. Since the dimensions can be smaller than
characteristic scattering lengths, transport can be ballistic and highly sensitive to boundary
conditions (contacts, surfaces, and interfaces). To complicate the problem, many new effects
that can be observed depend upon the complicated many-body system itself, and simple
one-electron theory no longer describes these new effects. Finally, the size can be small
compared to the phase-breaking length, which nominally describes the distance over which
the electron wave's phase is destroyed by some process. In this case, the phase of the particle
becomes important, and many phase-interference effects begin to appear in the characteristic
conductance of the material.

Our purpose in this book is twofold. First, we will attempt to review the observed ex-
perimental effects that are seen in mesoscopic devices. Second, we want to develop the
theoretical understanding necessary to describe these experimentally observed phenomena.
But in the remainder of this chapter, the goal is simply to give an introduction into the
type of effects that are seen, and to discuss why these effects will be important to future
technology, as well as for their interesting physics.

1.1 Nanostructures: The impact
1.1.1 Progressing technology

Since the introduction of the integrated circuit in the late 1950s, the number of individual
transistors that can be placed upon a single integrated circuit chip (often just called the chip)
has approximately quadrupled every three years. The fact that more functionality can be
put on a chip when there are more transistors, coupled to the fact that the basic cost of the
chip (in terms of $/cm?) changes very little from one generation to the next, leads to the
conclusion that greater integration leads to a reduction in the basic cost per function for high-
level computation as more functions are placed on the chip. It is this simple functionality
argument that drives the chip progress. In 1980, Hewlett-Packard produced a single-chip
microprocessor containing approximately 0.5 M devices in its 1 cm? area [1]. This chip
was produced with transistors having a nominal 1.25 um gate length and was considered
a remarkable step forward. Today, the dynamic random-access memory chip (DRAM) is
the technology driver; the 64 Mbit is currently in production, with the 256 Mbit expected
in 1998. The former chip obviously contains on the order of 64 million transistors. With
this progress, one can expect to see 10° devices on a single chip just after the turn of the
century. In general, this rapid progress in chip density has followed a complicated scaling
relationship [2]. The reduction in critical feature size, such as the gate length, is actually
a factor of only 0.7 each generation, and this produces only a doubling of the device
density. (Other factors are an increase in the actual chip area and changes in the circuit
implementation, such as the introduction of trench capacitors.) Still, this leads to some
remarkable projections. The 64 Mbit chip uses nominally 0.35-um gate length transistors.
Following the scaling relationships will lead to gate lengths of only 0.1 xm in just over a
decade (for the 16 Gbit chip, which scaling suggests will arrive in full production in 2007).
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From this discussion, one can reasonably ask just how far the size of an individual electron
device can be reduced, and if we understand the physical principles that will govern the
behavior of devices as we approach this limiting size. In 1972, Hoeneisen and Mead (3]
discussed the minimal size expected for a simple MOS gate (as well as for bipolar devices).
Effects such as oxide breakdown, source-drain punch-through, impact ionization in the
channel, and so on were major candidates for processes to limit downscaling. Years later,
Mead [4] reconsidered this limit in terms of the newer technologies that have appeared since
the earlier work, concluding that one could easily downsize the transistor to a gate length
of 30 nm if macroscopic transport theory continued to hold.

The above considerations tell us that the industry is pushing the critical dimensions
downward at a very rapid rate. In contrast to this, research has led to the fabrication of
really small individual transistors that operate (at room temperature) in a more-or-less
normal fashion. For example, Schottky-gate FETs and high-electron-mobility FETs in GaAs
have been made with gate lengths down to 20 nm [5]-{7], and MOSFETs in Si have been
made with fabricated gate lengths down to 40 nm [8]. In the latter, the effective gate
length was as short as 27 nm. While these devices appear to be normal, there is already
evidence that the transport is changing, with tunneling through the gate depletion region
becoming more important [9]. Perhaps the more important attribute is the variation that can
be expected as one moves from device to device across a chip containing several million
transistors. If there is a significant fluctuation in the number of impurities (and/or the number
of electrons/holes), then the performance of the devices varies significantly across the chip.
This is a major reliability problem, which translates into a dramatic reduction in the effective
noise margin (the range over which a voltage level can vary without changing the state of
a logic gate) of the devices in the chip. This in turn translates into reduced performance of
the chip.

Granted that the technological momentum is pushing to ever smaller devices, and that the
technology is there to prepare really small devices, it becomes obvious that we must now
ask whether our physical understanding of devices and their operation can be extrapolated
down to very small space and time scales without upsetting the basic macroscopic transport
physics — or do the underlying quantum electronic principles prevent a down-scaling of
the essential semi-classical concepts upon which this macroscopic understanding is based?
Preliminary considerations of this question were presented more than a decade ago [10].
Suffice it to say, though, that experiment has progressed steadily as well, and ballistic
(and therefore coherent and unscattered) transport has been seen in the base region of a
GaAs/AlGaAs hot electron transistor [11]. From this, it is estimated that the inelastic mean
free path for electrons in GaAs may be as much as 0.12 um at room temperature. Moreover,
there are simulations that suggest that it is less than a factor of two smaller in Si [12]). The
inelastic mean free path is on the order of (and usually equal to) the energy relaxation length
l. = vt,, where 7, is the energy relaxation time and v is a characteristic velocity (which is
often the Fermi velocity in a degenerate system). (There is some ambiguity here because
the energy relaxation time is usually defined as the effective inverse decay rate for the
mean electron energy, or temperature. The definition here talks about a mean-free path for
energy relaxation, which is not quite the same thing. This is complicated by the fact that, in
mesoscopic systems, one really talks about a phase-breaking time, which is meant to refer
to the average time for relaxation of the coherent single particle phase of a charge carrier.
Again, this is a slightly different definition. This ambiguity exists throughout the literature,
and although we will probably succumb to it in later chapters, the reader should recognize



