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Preface

Morita context rings were first introduced by Morita in [83], in order to charac-
terize when two rings have equivalent module categories. A fundamental result is
that the categories of modules over two rings with identity R and S are equiva-
lent if and only if there exists a strict Morita context connecting R and S, where
“strict” implies that both Morita maps being surjective. Morita contexts have
been used to the study of group actions on rings and Galois theory for commu-
tative rings. We refer the reader to [77] for details. Moreover, some aspects of
Morita context rings have been studied. For examples, in [92], Sands investigated
various radicals of rings occurring in Morita contexts. R. Buchweitz investigated
how to compare Hochschild cohomology of algebras related by a Morita context
in [20].

Note that every ring with nontrivial idempotent is isomorphic to a Morita
context ring. Thus many classes of algebras from various branches of mathe-
matics can be viewed as Morita context rings, such as classical matrix rings,
quasi-hereditary algebras, nest algebras, von Neumann algebras, incidence alge-
bras and so on.

Morita context rings are natural generalization of the so-called triangular
algebras. It is an active research area to study various mappings on triangular
algebras, such as commuting mappings, Lie derivations, Jordan derivations, gen-
eralized derivations, higher derivations and non-linear mappings etcetera. These
mappings have been used to study Lie isomorphisms, commutativity preserving
maps, Jordan homomorphisms and Hochschild cohomology and so on. However,
people pay much less attention to mappings of Morita context rings, to the best
of our knowledge there were fewer articles dealing with mappings of Morita con-
text rings before 2010. Recently, Li, Wei and Xiao jointly studied mappings of
Morita context rings in [64-67,102], which developed the theory of mappings of
triangular algebras to the case of Morita context rings. The purpose of this book
is to integrate the results of mappings on Morita context rings obtained by Li,
Xijao and other mathematicians.

The book is divided into three chapters. We begin with the definition of

Morita context rings in Chapter 1, then list examples from classical matrix alge-
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bras, path algebras, smash product, groups algebras and operator algebras. In
Chapter 2, we study linear mappings on Morita context rings, including commut-
ing mappings, Lie derivations, Jordan derivations, Jordan generalized derivations
and Lie triple derivations. Note that the first important result about centralizing
mappings was obtained by Posner which states that the existence of a nonzero
commuting derivation on a prime algebra A implies that A is commutative.
Therefore, we depict Posner’s theorem in Section 1. Some related results are
also given. In Section 2, we first describe the general form of commuting map-
pings of Morita context rings and consider the question of when all commuting
mappings are proper. These work extend the main results of [24] to the case
of Morita context rings. The second topic of this section is skew commuting
mappings. We prove that every skew commuting map on Morita context rings
under certain conditions is zero. These results not only give new perspectives to
the work of [13] but also extend the main results of [24]. Moreover, a brief de-
scription about semi-centralizing mappings, k-commuting mappings and k-skew
centralizing mappings on Morita context rings is also given. In Section 3, we in-
vestigate Lie derivations on Morita context rings. Our aim is to give a necessary
and sufficient condition for each Lie derivation on a Morita context ring being
of the standard form. In Section 4, we mainly study the question of whether
there exist proper Jordan derivations on the Morita context ring G. It is shown
that if one of the bilinear pairings @5rn and Wy s is nondegenerate, then every
anti-derivation of G is zero. Furthermore, if the bilinear pairings @y/n and Yy s
are both zero, then every Jordan derivation of G is the sum of a derivation and
an anti-derivation. At the end of this section, we describe a result obtained by
Benkovi¢ and Sirovnik in [8]. A generalization of Jordan derivation, which was
called Jordan generalized derivations is studied in Section 4. Note that we only
consider the special case of Morita context rings, that is, triangular algebras.
We prove that every Jordan generalized derivation on a triangular algebra is a
generalized derivation. In the last section, we study Lie triple derivations of the
triangular algebra 7. It is shown that under mild assumptions, each Lie triple
derivation L on 7 is of standard form. That is, L can be expressed through an
additive derivation and a linear functional vanishing on all second commutators
of 7. Examples of Lie triple derivations on some classical triangular algebras are

supplied. In Section 5, we consider local actions of linear mappings on Morita

ii



context rings. It is proved that mappings derivable (resp. Jordan derivable) at
two idempotents P and @ are derivations (resp. Jordan derivations). Chapter 3
is devoted to the treatment of higher derivations and non-linear mappings. Sec-
tion 1 is devoting to give a new characterization of Jordan higher derivation on
associative algebras, which enables one to transfer the problems of Jordan higher
derivations into the same problems concerning Jordan derivations. We establish
a one to one correspondence relation between the set of all Jordan higher deriva-
tions and the set of all Jordan derivations. Applying the corresponding relation,
in Section 2 we prove that every Jordan higher derivation on some operator
algebras is a higher derivation. The involved operator algebras include CSL al-
gebras, reflexive algebras, nest algebras. In Section 3, we prove that any Jordan
higher derivation on a triangular algebra is a higher derivation. This extends
the main result in [107] to the case of higher derivations. The kernel question in
the Section 4 is whether every higher derivation on a triangular algebra is inner.
We also consider some natural generalizations of higher derivations of triangular
algebras, such as Jordan (triple-)higher derivations, generalized Jordan (triple-
)higher derivations. In Section 5 we study nonlinear Lie higher derivations on the
triangular algebra 7. Let D = {L, }nen be a Lie higher derivation on 7 without
additive condition. Under mild assumptions, it is shown that D = {L, },enN is of
standard form; i.e. each component L,(n > 1) can be expressed through an ad-
ditive higher derivation and a non-linear functional vanishing on all commutators
of 7. As applications, non-linear Lie higher derivations on some classical triangu-
lar algebras are characterized. Another class of non-linear mappings considered
in this chapter is Jordan homomorphisms. We prove that every multiplicative bi-
jective map, Jordan bijective map, Jordan triple bijective map on certain Morita
context rings is additive. In the last section, we describe Jordan higher derivable
points.

We are indebted to our supervisor Professor Feng Wei for his guidance. We
wish to thank support from Fundamental Research Funds for the Central Univer-
sities (N110423007). We are also grateful to Mrs. Yuling Shi and other editors
of Northeastern University Press for their diligent work.

Li Yanbo and Xiao Zhankui,
December 2012.
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Chapter 1

Definitions and Examples of

Morita Context Rings

1.1 Definitions of Morita context rings
We begin with the definition of Morita context rings. Let R be a commutative

ring with identity. A Morita context consists of two R-algebras A and B, two

bimodules 4 Mp and gN4, and two bimodule homomorphisms called the pairings
Pyn - MRN — A
B

and

Uy : NQM — B
A
satisfying the following commutative diagrams:

MINQM Pun®Inm A M
B A A

IR

I ®YN M
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and
NOM®N ¥Wu®IN _BgN
A B B

1R

IN®PMN

IR

N®A =
® N.

Let us write this Morita context as (A, B, AMp,g Na,PunN,YNnurr)- 1 (A, B, AMp,
BNA, Py, PN ) is a Morita context, then the set

st

form an R-algebra under matrix-like addition and matrix-like multiplication.

A M
N B

aEA,meM,neN,beB}

Such an R-algebra is usually called a Morita context ring of order 2 and is
denoted by G = [1’3 Ag]

In a similar way, we can define a Morita context ring of any order n > 2.
Let R be a commutative ring with identity and A; (i = 1,2,--- ,n) be unital
algebras over R. Let ;M; be nonzero unital (A4;, A;)-bimodules for 1 <i < j<n

and ;M; = A;. We observe a family of (A;, Ax)-bilinear homomorphisms
e 0 MR My, — i My,
Aj
m M QYA = M,
Aj
7];-;’]- : Ai®iMj = iA/Ij
A;
and a family of diagrams

L j&nk
iM;Q; M@ My %M M@ M
AJ Ak AJ )

"g.k®[’°vl ”g.l
nk
iMk ®le il M
Ak 7 l
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where I; j and Ij; denote the identity mappings of ;M; and M;, respectively.

Let us consider the following set:

Gn(Ai; i M)
( 141 1m2 e 1Mnp—1 1Mn W
2m 202 T 2Mnp—1 2Mn
= S : z : : ia; € Ai, imj € iMj o .
n—1M1 n-1M2 ... n-1An-1 n—-1Mn
L L nTn1 nTn2 <o pMp—1 nln | )

Define the matrix-like addition and matrix-like multiplication on G, (A;;;M;) as

below:

(imj) £ (;m}) = (;m; £ ;m),

() ey = (St )

It is clear that this product is associative if and only if the family of diagrams
above are commutative. One can check that G,(A;;;M;) is an R-algebra un-
der the matrix-like addition and the matrix-like multiplication. In this case,
Gn(A;;iM;) is said to be Morita context ring of order n associated with those

bimodules ;M;(1 < i < j < n) and is usually written as

oA My - \Mnp_y 1M,

2 M) Ay oo oMy oM,

Gn(Ai;iM;) = g : : :
n-1Mi n_1Mz ... Ap1 n1M,
M My My A

Up to isomorphism, arbitrary Morita context ring of order n is a Morita context
ring of order 2. Indeed, if G, (A;;;M;) is a Morita context ring of order n, then
there exist R-algebras

A:gn—l(Ai;iMj) (1<z<]<n—1), B:Ana

3
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a nonzero (A, B)-bimodule

1M, 1Mnp
oM, 2Mp, i
M = . = . imp € My, 1<i<n—1
n—1Mn n—1Mn

and a nonzero (B, A)-bimodule

N=[M oMy oo WMy |
:{[nml nMmz - nmn—l] \nijnMj,1<j<n—1}
such that
Go(Ais i M;) = ]‘3 A;}

A special case of Morita context ring of order n is the case of tensor generalized
matriz algebras of order n: the modules s M, with r — s > 2 are tensor products
sMsiq ®As+1 v @a,_,r-1M;. The role of the morphisms 77{71; is played by
the identity morphisms of ;M; @ 4 jMj, and the associativity of the product
of Gn(A;;:M;) results from the associativity of the tensor products. In view of
the isomorphism relation between Morita context rings of order 2 and Morita
context rings of order n and technical considerations, only Morita context rings
of order 2 are studied in this book. Moreover, a Morita context ring is often
called a generalized matriz algebra as well. In particular, if A %2 0 and B # 0,
then G = [ an ] is called nontrivial.

Proposition 1.1.1. Every unital algebra with nontrivial idempotents is isomor-

phic to a nontrivial generalized matriz algebra.

Proof. Let R be a commutative ring with identity and A be a unital algebra
over R. Suppose that there exists a nontrivial idempotent e € A. One can easily
construct the following generalized matrix algebra:

gz[ eAe eA(l —e) ]
(1—e)de (1—e€)A(l—e)

eae ec(l—e)
(1—e)de (1—e)b(1—ce)

a,b,c,dEA}.
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According to the routine computation, we can verify the R-linear mapping
E:A— G
eae ea(l —e)
a+——
(1—e)ae (1—e€)a(l—e)
is a homomorphism from A to G. Moreover, if

eae ea(l—e) } _ l ebe eb(1 —e) ]
(1—e)ae (1—-e)a(l—ce) (1—e)be (1—e)b(l—e) |’

then eae = ebe and ea(l — e) = eb(1 — e). This leads to ea = eb. Likewise, we
also have (1 —e)ae = (1 —e)be and (1 —e)a(l —e) = (1 —e)b(1 — e). This gives
that (1 —e)a = (1 — e)b. Thus a = b and hence £ is injective.

On the other hand, for any [(li‘gde (lice()lbzfle)] € G, there exists

eae+ec(l—e)+ (1 —e)de+ (1 —e)b(l —e) € A
such that

E(eae +ec(l—e)+ (1 —e)de+ (1 —e)b(l —e)) = [(liczde (lic;)lbzfle)] :

So £ is surjective. Therefore £ is an isomorphism from A to G. a

Let G = (A, M, N, B) be a generalized matrix algebra. If M is faithful as left
A-module and as right B-module, then we have the following two lemmas.

Lemma 1.1.2. The centre of G is

wo-{[i1]

Proof. Tt follows from [61, Lemma 1] that the centre Z(G) consists of all diagonal
matrices [8 g], where a € Z(A), b € Z(B) and am = mb, na = bn for all
m € M, n € N. However, in our situation which M is faithful as a left A-module
and also as a right B-module, the conditions that a € Z(A) and b € Z(B) become
redundant and can be deleted. Indeed, if am = mb for all m € M, then for any

am = mb, na = bn, VmEM,VnEN}.

a' € A we get
(aa’ — a’a)m = a(a’'m) — a/(am) = (a'm)b — a’(mb) = 0.

5
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The assumption that M is faithful as a left .A-module leads to aa’ —a’a = 0 and
hence a € Z(A). Likewise, we also have b € Z(B). |

Let us define two natural R-linear projections 74 : G — A and 7 : G — B

n b n b

By Lemma 1.1.2 it is easy to see that m4 (£(G)) is a subalgebra of Z(A) and
that 75 (Z(G)) is a subalgebra of Z(B).

7rA:|:a mJ»——»a and WB:[G m}t—)b.

Lemma 1.1.3. There exists a unique algebraic isomorphism
¢ :ma(2(9)) — 78(2(9))
such that am = mey(a) and na = p(a)n for all a € mo(2(G)), m € M, n € N.

Proof. For a fixed a € ma(Z(G)), if [39],[25] € Z(G), we have am = mb =
mb’ for any m € M. Since M is faithful as a right B-module, b = ¥ . That
means there exists a unique b € 7p(Z(G)), which is denoted by ¢(a), such that
[49] € 2(G). Thus [gw&)} [0m] =[0m] [gw?a)] for all m € M, n € N. So
am = my(a), na = p(a)n for any m € M,n € N. We easily observe that
the mapping ¢ is also surjective. It remains to show that ¢ is an algebraic
isomorphism.

For any a,a’ € m4(Z(G)) and r € R, we have
(ra)m = r(am) = r(me(a)) = m(re(a)),
(a+a')m = m(p(a) + ¢(a’))
and
(aa')m = a(a'm) = (a'm)p(a) = d'(myp(a)) = mp(a)p(d).
Therefore p(ra) = rp(a), p(a+a’) = p(a) + p(a’) and p(aa’) = ¢(a)p(a’), and

these facts complete the proof of the lemma. O

Let 14 (resp. 1p) be the identity of the algebra A (resp. B), and let I be the
identity of the Morita context ring G. Sometimes, we use the following notations:

p_ 14 0 7 Q=I-P= 0 0
0 O 0 1p

6
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and

Gi1 = PGP, G2 = PGQ, Go1 = QGP, G = QGQ.

Thus the Morita context ring G can be written as

G = PGP+ PGQ + QGP + QGQ = G11 + Gi2 + Ga1 + Ga22.

G11 and Goo are subalgebras of G which are isomorphic to A and B, respectively.
G2 is a (G11, G22)-bimodule which is isomorphic to the (A, B)-bimodule M. Go;
is a (Ga2, G11)-bimodule which is isomorphic to the (B, A)-bimodule N.

1.2 Classical matrix algebras

In this section, we represent full matriz algebras, upper (lower) triangular matrix

algebra, block upper triangular matriz algebra as Morita context rings.

1.2.1 Full matrix algebras

Let R be a commutative ring with identity, A be a unital R-algebra and M, (A)
be the algebra consisting of all n x n matrices over A (n > 2). Then the full
matriz algebra M,(A) can be represented as a Morita context ring of the form

A Mlx(n—l)(A)

Ml =1 () Mar(4)

1.2.2 Triangular matrix algebras

Denote the set of all p x ¢ matrices over the R-algebra A by Mjy4(A). Let us
denote the set of all n x n upper triangular matrices over A and the set of all
n x n lower triangular matrices over A by T, (A) and T}, (A), respectively. For
n > 2 and each 1 < k < n — 1, the upper triangular matriz algebra T, (A) and

lower triangular matriz algebra T (A) can be written as

Ti(A
T, (A) = ké) M (n—k) (A)
Tn—k(A)
and
T/(A) (@)
T, (A) = k , ;
Mp—iyxi(A) T, _4(A)
respectively.
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1.2.3 Block upper triangular matrix algebras

Let N be the set of all positive integers and let n € N. For any positive integer m
with m < n, we denote by d = (d1,--+ ,diy- -+ ,dm) € N™ an ordered m-vector
of positive integers such that n = dy +--- +d; + --- + dp,. The block upper
triangular matriz algebra B,‘g(A) is a subalgebra of M, (A) with form

[ Mdl (A) T Md1 Xdi(A) T Md1 Xdm (A) ]
B(A) = Mg (A) -+ My xa, (A)
[0 ’ :
| Mg, (A) |

Likewise, the block lower triangular matrixz algebra B;IJ(A) is a subalgebra of
M, (A) with form

-

Md1(A)
_ s 3 0
B (A) = | Myxa,(A) -+ Mg(A)
| Mg, xa,(A) ... Mg, xaq,(A) ... My, (A) l

Note that the full matrix algebra M, (A) of all n x n matrices over A and the
upper(resp. lower) triangular matrix algebra T}, (A) of all n x n upper triangular
matrices over A are two special cases of block upper(resp. lower) triangular ma-
trix algebras. If n > 2 and Bg(A) # M, (A), then B;i: (A) is an upper triangular
algebra and can be written as

BH(A)  Mjyn_j)(A)

Bi(A) = g
" Om—j)xj B ,;(A)

b

where 1 < j < m and d; € N7,dy € N™J, Similarly, if n > 2 and B/9(A) #
M, (A), then B!?(A) is a lower triangular algebra and can be represented as

Bi*(4)  Ojx(a—y)
M(n—j)xj(A) B;dzj(A)

I

B(A) = [

where 1 < j < m and d; € N7, dy € N7,

8
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Let K be a field of characteristic zero. The block upper (resp. lower) tri-
angular matrix algebra Bg(K) (resp. B;{I(K)) over K naturally arise in any
finite-dimensional algebra and also implies that any finite-dimensional algebra
contains sufficiently many subalgebras of the type B;i: (K) and subalgebras of the
type B;{i— (K). Bf; (K) and B;fZ (K) are extensively applied in studying the exponent
growth of various varieties of associative algebras over K ( see [38,39]).

1.2.4 Inflated algebras

Let A be a unital R-algebra and V be an R-linear space. Given an R-bilinear
form v : V®g V — A, we define an associative algebra (not necessarily with
identity) B = B(A,V, v) as follows: as an R-linear space, B equals to V ®x
V ®r A. The multiplication is defined as follows:

(a®b®7) (c®d®y):=a®d®z7(b )y

for all a,b,c,d € V and any x,y € A. This definition makes B become an asso-
ciative R-algebra and B is called an inflated algebra of A along V. The inflated
algebras are closely connected with the cellular algebras which are extensively
studied in representation theory. We refer the reader to [60] and the references
therein for these algebras.

Let us assume that V' is a non-zero linear space with a basis {vy,--- ,vp}.
Then the bilinear form v can be characterized by an n xn matrix M over A, that
is, M = (v (vi, vj)) for 1 < 4,j < n. Now we could define a new multiplication
“o” on the full matrix algebra M,(A) by

X oY :=XMY forall XY € M,(A).

Under the usual matrix addition and the new multiplication “o”, M, (A) becomes
a new associative algebra which is a generalized matrix algebra in the sense of
Brown (see [19]). We denote this new algebra by (My,(A), M). It should be
remarked that our current generalized matrix algebras contain all generalized
matrix algebras defined by Brown in [19] as special cases. By [60, Lemma 4.1],
the inflated algebra B(A,V, <) is isomorphic to (M,(A), M) and hence is a
generalized matrix algebra in the sense of ours.



