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Preface

At what point in the development of a new field should a book be written
about it? This question is seldom easy to answer. In the case of interacting
particle systems, important progress continues to be made at a substantial
pace. A number of problems which are nearly as old as the subject itself
remain open, and new problem areas continue to arise and develop. Thus
one might argue that the time is not yet ripe for a book on this subject. On
the other hand, this field is now about fifteen years old. Many important
problems have been solved and the analysis of several basic models is
almost complete. The papers written on this subject number in the hundreds.
It has become increasingly difficult for newcomers to master the proliferating
literature, and for workers in allied areas to make effective use of it. Thus
I have concluded that this is an appropriate time to pause and take stock
of the progress made to date. It is my hope that this book will not only
provide a useful account of much of this progress, but that it will also help
stimulate the future vigorous development of this field.

My intention is that this book serve as a reference work on interacting
particle systems, and that it be used as the basis for an advanced graduate
course on this subject. The book should be of interest not only to
mathematicians, but also to workers in related areas such as mathematical
physics and mathematical biology. The prerequisites for reading it are solid
one-year graduate courses in analysis and probability theory, at the level
of Royden (1968) and Chung (1974), respectively. Material which is usually
covered in these courses will be used without comment. In addition, a
familiarity with a number of other types of stochastic processes will be
helpful. However, references will be given when results from specialized
parts of probability theory are used. No particular knowledge of statistical
mechanics or mathematical biology is assumed. While this is the first
book-length treatment of the subject of interacting particle systems, a
number of surveys of parts of the field have appeared in recent years. Among
these are Spitzer (1974a), Holley (1974a), Sullivan (1975b), Liggett (1977b),
Stroock (1978), Griffeath (1979a, 1981), and Durrett (1981). These can serve
as useful complements to the present work.

This book contains several new theorems, as well as many improvements
on existing results. However, most of the material has appeared in one form
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or another in research papers. References to the relevant papers are given
in the ““Notes and References” section for each chapter. The bibliography
contains not only the papers which are referred to in those sections, but
also a fairly complete list of papers on this general subject. In order to
encourage further work, I have listed a total of over sixty open problems
at the end of the appropriate chapters. It should be understood that these
problems are not all of comparable difficulty or importance. Undoubtedly,
some will have been solved by the time this book is published.

The following remarks should help the reader orient himself to the book.
Some of the most important models in the subject are described in the
Introduction. The main questions involving them and a few of the most
interesting results about them are discussed there as well. The treatment
here is free of the technical details which become necessary later, so this
is certainly the place to start reading the book.

The first chapter deals primarily with the problem of existence and
uniqueness for interacting particle systems. In addition, it contains (in
Section 4) several substantive results which follow from the construction
and are rather insensitive to the precise nature of the interaction. From a
logical point of view, the construction of the process must precede its
analysis. However, the construction is more technical, and probably less
interesting, than the material in the rest of the book. Thus it is important
not to get bogged down in this first chapter. My suggestion is that, on the
first reading, one concentrate on the first four sections of Chapter I, and
perhaps not spend much time on the proofs there. Little will be lost if in
later chapters one is willing to assume that the global dynamics of the
process are uniquely determined by the informal infinitesimal description
which is given. The martingale formulation which is presented following
Section 4 has played an important role in the development of the subject,
but will be used only occasionally in the remainder of this book.

Many of the tools which are used in the study of interacting particle
systems are different from those used in other branches of probability theory,
orif the same, they are often used differently. The second chapter is intended
to introduce the reader to some of these tools, the most important of which
are coupling and duality. In this chapter, the use of these techniques is
illustrated almost exclusively in the context of countable state Markov
chains, in order to facilitate their mastery. In addition, the opportunity is
taken there to prove several nonstandard Markov chain results which are
needed later in the book.

In Chapter III, the ideas and results of the first two chapters are applied
to general spin systems—those in which only one coordinate changes at a
time. It is here, for example, that the general theory of attractive systems
is developed, and that duality and the graphical representation are intro-
duced. Chapters IV-IX treat specific types of models: the stochastic Ising
model, the voter model, the contact process, nearest-particle systems, the
exclusion process, and processes with unbounded values. These chapters
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have been written so that they are largely independent of one another and
may be read separately. A good first exposure to this book can be obtained
by lightly reading the first four sections of Chapter I, reading the first half
of Chapter 11, Chapter III, and then any or all of Chapters IV, V, and VL

While I have tried to incorporate many of the important ideas, techniques,
results, and models which have been developed during the past fifteen years,
this book is not an exhaustive account of the entire subject of interacting
particle systems. For example, all models considered here have continuous
time, in spite of the fact that a lot of work has been done on analogous
discrete time systems, particularly in the Soviet Union. Not treated at all
or barely touched on are important advances in the following closely related
subjects: infinite systems of stochastic differential equations (see, for
example, Holley and Stroock (1981), Shiga (1980a,b) and Shiga and
Shimizu (1980)), measure-valued diffusions (see, for example, Dawson
(1977) and Dawson and Hochberg (1979, 1982)), shape theory for finite
interacting systems (see, for example, Richardson (1973), Bramson and
Griffeath (1980c, 1981), Durrett and Liggett (1981), and Durrett and
Griffeath (1982)), renormalization theory for interacting particle systems
(see, for example, Bramson and Griffeath (1979b) and Holley and Stroock
(1978b, 1979a)), cluster processes (see, for example, Kallenberg (1977),
Fleischmann, Liemant, and Matthes (1982), and Matthes, Kerstan, and
Mecke (1978)), and percolation theory (see, for example, Kesten (1982)
and Smythe and Wierman (1978)).

The development of the theory of interacting particle systems is the result
of the efforts and contributions of a large number of mathematicians. There
are many who could be listed here, but if I tried to list them, I would not
know where to stop. In any case, their names appear in the “Notes and
References” sections, as well as in the Bibliography. I would particularly
like to single out Rick Durrett, David Griffeath, Dick Holley, Ted Harris,
and Frank Spitzer, both for their contributions to the subject and for the
influence they have had on me. Enrique Andjel, Rick Durrett, David
Griffeath, Dick Holley, Claude Kipnis, and Tokuzo Shiga have read parts
of this book, and have made valuable comments and found errors in the
original manuscript.

Since this is my first book, this is a good place to acknowledge the
influence which Sam Goldberg at Oberlin College, and Kai Lai Chung and
Sam Karlin at Stanford University had on my first years as a probabilist. ]
would like to thank Chuck Stone for his encouragement during the early
years of my work on interacting particle systems, and in particular for
handing me a preprint of Spitzer’'s 1970 paper with the comment that I
would probably find something of interest in it. This book is proof that he
was right.

More than anyone else, it was my wife, Chris, who convinced me that I
should write this book. In addition to her moral support, she contributed
greatly to the project through her excellent typing of the manuscript. Finally,
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1 would like to acknowledge the financial support of the National Science
Foundation, both during the many years | have spent working on this
subject, and particularly during the past two years in which | have been
heavily involved in this writing project.



Frequently Used Notation

A finite or countable set of sites.

The d-dimensional integer lattice.

The collection of finite subsets of S or Su {co}.

The state space of the process; usually {0, 1}°.

The continuous functions on X.

The Lipschitz functions on X (see Section 3 of Chapter I).
The increasing continuous functions on X.

The functions on X which depend on-finitely many coordinates.
The probability measures on X.

When S = Z¢ the translation invariant elements of 2.

The extremal (or ergodic) elements of &.

The elements of ? which are invariant for the process.

The extremal elements of .

The elements of ? which are reversible for the process.

The Gibbs measures corresponding to some potential.

The extremal Gibbs measures.

The pointmasses on n=0 and n=1.

Typical elements of 2.

Stochastic monotonicity (see Definition 2.1 of Chapter II).
The Markov process which represents an interacting particle
system.

The flip rate at x€ S when the configuration is n € X.

The semigroup corresponding to the process.

The distribution at time ¢ when the initial distribution is u € 2.
The generator or pregenerator of the process.

The domain of Q.

The range of ().

The real part of a complex number.

The n-step transition probabilities for a discrete time Markov
chain.

The transition probabilities for a continuous time Markov chain.
Harmonic functions; often with some additional constraints.
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Introduction

The field of interacting particle systems began as a branch of probability
theory in the late 1960’s. Much of the original impetus came from the work
of F. Spitzer in the United States and of R. L. Dobrushin in the Soviet
Union. (For examples of their early work, see Spitzer (1969a, 1970) and
Dobrushin (1971a,b).) During the decade and a half since then, this area
has grown and developed rapidly, establishing unexpected connections with
a number of other fields.

The original motivation for this field came from statistical mechanics.
The objective was to describe and analyze stochastic models for the temporal
evolution of systems whose equilibrium measures are the classical Gibbs
states. In particular, it was hoped that this would lead to a better understand-
ing of the phenomenon of phase transition. As time passed, it became clear
that models with a very similar mathematical structure could be naturally
formulated in other contexts—neural networks, tumor growth, spread of
infection, and behavioral systems, for example.

From a more mathematical point of view, interacting particle systems
represents a natural departure from the established theory of Markov
processes. As such, with its different motivation, it has led to a large number
of stimulating new types of problems. The solutions of many of these new
problems has led in turn to the development of new tools, and to the
exploitation on an entirely different level of tools which had earlier played
only relatively minor roles in probability theory. A typical interacting particle
system consists of finitely or infinitely many particles which, in the absence
of the interaction, would evolve according to independent finite or countable
state Markov chains. Superimposed on this underlying motion is some type
of interaction. As a result of the interaction, the evolution of an individual
particle is no longer Markovian. The system as a whole is of course
Markovian. However, it is a large and complex Markov process which
differs in many respects from the processes such as Brownian motion on
Euclidean spaces which motivated much of the development of standard
Markov process theory. Thus, while some connections with the Markovian
universe are maintained, substantial departures from it occur as well.

Let us illustrate some of the differences between particle systems and
the more standard Markov processes in a very simple context. Suppose that
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{m/(x), xe S} is a countable collection of independent irreducible con-
tinuous time Markov chains with state space {0, 1}. Of course, the analysis
of this system is entirely elementary because of the independence assumption
and the simple nature of the individual chains. Suppose however that the
entire system 7, is viewed as a Markov process on the uncountable totally
disconnected space {0, 1}°. Then for any fixed initial configuration 7,, the
distributions of 7, at different times are product measures which are mutually
singular with respect to each other and with respect to the unique invariant
measure for the process. This is of course vastly different from the much
smoother behavior evidenced by Brownian motion or other more common
Markov processes. If a simple interaction is superimposed on the underlying
motion of this collection of two state Markov chains, these mutual singularity
properties will in general remain, while the analysis based on independence
is no longer available. Thus new techniques are required. The models to be
treated in Chapters ITI-VII are obtained by superimposing various natural
types of interactions on the simple systems described above. This is done
by letting the flip rate of each coordinate depend on the values of other
coordinates.

As might be expected, the behavior of an interacting particle system
depends in a rather sensitive way on the precise nature of the interaction.
Thus most of the research which has been done in this field has dealt with
certain types of models in which the interaction is of a prescribed form.
The unity of the subject comes not so much from the generality of the
theorems which are proved, but rather from the nature of the processes
which are studied, the types of problems which are posed about them, and
the techniques which are used in their solution.

The main problems which have been treated involve the long-time
behavior of the system. The first step in proving limit theorems is to describe
the class of invariant measures for the process, since these are the possible
limits as t- 00 of the distribution at time t. The next step is to determine
to the extent possible the domain of attraction of each invariant measure.
This means, to determine for each invariant measure, the class of all initial
distributions for which the distribution at time ¢ of the process converges
to that measure as ¢t 00. In the case of the independent two state Markov
chains, the answers to these questions are of course that there is a unique
invariant measure for the process, which is the product of the stationary
distributions for the individual two state chains. Its domain of attraction is
the collection of all probability measures on {0, 1}°.

In order to make the foregoing remarks more concrete, we will now
describe informally some of the models which have received the most
attention, and will specify the form which these problems take in each case.
In the first three examples, only one coordinate of 7, changes at a time. In
general, however, infinitely many coordinates will change in any interval
of time. In the fourth example, two coordinates change at a time.
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The Stochastic Ising Model. This is a model for magnetism which was
introduced by Glauber (1963) and then first studied in some generality by
Dobrushin (1971a, b). It is a Markov process with state space {—1, +1}zd.
The sites represent iron atoms, which are laid out on the d-dimensional
integer lattice Z¢ while the value of +1 at a site represents the spin of the
atom at that site. A configuration of spins 7 is then a point in {—1, +1}%".
The dynamics of the evolution are specified by the requirement that a spin
n(x) at xe Z* flips to —n(x) at rate

CXP[—B Z n(x)n(y)],

yily=x|=1
where B is a nonnegative parameter which represents the reciprocal of the
temperature of the system. Note that the flip rate is higher when the spin
at x is different from that at most of its neighbors than it is when it agrees
with most of its neighbors. Thus the system “‘prefers” configurations in
which the spins tend to be aligned with one another. In the language of
statistical mechanics, this monotonicity is referred to as ferromagnetism. In
the subject of interacting particle systems, such monotone systems are called
“attractive.” Of course when B =0, the coordinates 7,(x) are independent
two-state Markov chains, so as observed earlier, the system has as its unique
invariant measure the Bernoulli product measure » on {—1, +l}zd with
parameter 3. Furthermore, for any initial distribution, the distribution at
time ¢ converges weakly as 1> to v by the convergence theorem for
finite-state irreducible Markov chains. Such a system, which has a unique
invariant measure to which convergence occurs for any initial distribution,
will be called ergodic. The first important problem to be resolved for the
stochastic Ising model is to determine for which choices of 8 and d the
process is ergodic. The first answer, as will be seen in Chapter IV, is that
the process is ergodic for all B if d = 1. In fact, in one dimension the unique
invariant measure is a stationary two-state Markov chain, which is regarded
as a measure on {—1, 1} If d =2, there is a critical 8, >0 so that the
process is ergodic if B < B, but not if 8> B,. If d =2 and B > B,, then there
are exactly two extremal invariant measures. If d =3 and B is sufficiently
large, then there are infinitely many extremal invariant measures. Nonergo-
dicity corresponds to the occurrence of phase transition, with distinct
invariant measures corresponding to distinct phases.

The Voter Model. The voter model was introduced independently by Clitford
and Sudbury (1973) and by Holley and Liggett (1975). Here the state space
is {0, 1}?* and the evolution mechanism is described by saying that n(x)
changes to 1 — n(x) at rate

L ¥

~ 7 Hntsnio
2d viy—x|=1 el
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In the voter interpretation of Holley and Liggett, sites in Z“ represent voters
who can hold either of two political positions, which are denoted by zero
and one. A voter waits an exponential time with parameter one, and then
adopts the position of a neighbor chosen at random. In the invasion
interpretation of Clifford and Sudbury, {xeZ?: n(x)=0} and {xe
Z?: (x) = 1} represent territory held by each of two competing populations.
A site is invaded at a rate proportional to the number of neighboring sites
controlled by the opposing population. The voter model has two trivial
invariant measures: the pointmasses at =0 and n =1 respectively. Thus
the voter model is not ergodic. The first main question in this case is whether
there are any other extremal invariant measures. As will be seen in Chapter
V, there are no others if d =2. On the other hand, if d =3, there is a
one-parameter family {u,, 0=< p =< 1} of extremal invariant measures, where
M, is translation invariant and ergodic, and w,{n: n(x)=1}=p. This
dichotomy is closely related to the fact that a simple random walk on Z*
is recurrent if d = 2 and transient if d = 3. In terms of the voter interpretation,
one can describe the result by saying that a consensus is approached as
t->0 if d =2, but that disagreements persist indefinitely if d = 3.

The Contact Process. This process was ig}troduced and first studied by Harris
(1974). 1t again has state space {0, 1}*". The dynamics are specified by the
following transition rates: at site x,

1-0 atratel,

and

0->1 atrateA Y 7(y),

yily—x|=1

where A is a positive parameter which is interpreted as the infection rate.
With this interpretation, sites at which n(x) =1 are regarded as infected,
while sites at which n(x) =0 are regarded as healthy. Infected individuals
become healthy after an exponential time with parameter one, independently
of the configuration. Healthy individuals become infected at a rate which
is proportional to the number of infected neighbors. The contact process
has a trivial invariant measure: the pointmass at n =0. The first important
question is whether or not there are others. As will be seen in Chapter VI,
there is a critical A, for d =1 so that the process is ergodic for A <A, but
has at least one nontrivial invariant measure if A > A, The value of A, is
not known exactly. Bounds on A, are available, however. For example,

_—SAd<

2
2d -1 d

for all d = 1. Good convergence theorems are known when d = 1. However,



