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Preface

Partial Differential Equations and Solitary Waves Theory is designed to serve as a
text and a reference. The book is designed to be accessible to advanced undergrad-
uvate and beginning graduate students as well as research monograph to researchers
in applied mathematics, science and engineering. This text is different from other
texts in that it explains classical methods in a non abstract way and it introduces
and explains how the newly developed methods provide more concise methods to
provide efficient results.

Partial Differential Equations and Solitary Waves Theory is designed to focus
readers’ attentions on these recently developed valuable techniques that have proven
their effectiveness and reliability over existing classical methods. Moreover, this text
also explains the necessary classical methods because the aim is that new methods
would complement the traditional methods in order to improve the understanding of
the material.

The book avoids approaching the subject through the compact and classical
methods that make the material impossible to be grasped, especially by students
who do not have the background in these abstract concepts. Compact theorems and
abstract handling of the material are not presented in this text.

The book was developed as a result of many years of experience in teaching
partial differential equations and conducting research work in this field. The author
has taken account on his teaching experience, research work as well as valuable
suggestions received from students and scholars from a wide variety of audience.
Numerous examples and exercises, ranging in level from easy to difficult, but con-
sistent with the material, are given in each section to give the reader the knowledge,
practice and skill in partial differential equations and solitary waves theory. There is
plenty of material in this text to be covered in two semesters for senior undergradu-
ates and beginning graduates of Mathematics, Science, and Engineering.

The content of the book is divided into two distinct parts, each is a self-contained
and practical part. Part I contains eleven chapters that handle the partial differential
equations by using the newly developed methods, namely, Adomian decomposi-
tion method and Variational Iteration Method. Some of the traditional methods are
used in this part. With a diverse readership and interdisciplinary audience of applied
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mathematics, science, and engineering, attempts are made so that part I presents
both analytical and numerical approaches in a clear and systematic fashion to make
this book accessible to many who work in this field.

Part I contains seven chapters devoted to thoroughly examine solitary waves the-
ory. Since the discovery of solitons in 1965, mathematicians, engineers, and physi-
cists have been intrigued by the rich mathematical structure of solitons. Solitons
play a prevalent role in propagation of light in fibers, surface waves in nonlinear di-
electrics, optical bistability, optical switching in slab wave guides, and many other
phenomena in plasma and fluid dynamics.

Chapter 1 provides the basic definitions and introductory concepts. Initial value
problems and boundary value problems are discussed. In Chapter 2, the first order
partial differential equations are handled by the newly developed methods, namely,
the Adomian decomposition method (ADM) and the variational iteration method
(VIM). The method of characteristics is introduced and explained in detail. Chapter
3 deals with the one-dimensional heat flow where homogeneous and inhomoge-
neous initial-boundary value problems are approached by using the decomposition
method, the variational iteration method and the method of separation of variables.
Chapter 4 is entirely devoted to the two-dimensional and three-dimensional heat
flow. Chapter 5 provides the reader with a comprehensive discussion of the literature
related to the one-dimensional wave equation. The decomposition method and the
variational iteration method are used in handling the wave equations in a bounded
and an unbounded domain. Moreover, the method of separation of variables and
the D’ Alembert method are also used. Chapter 6 presents a comprehensive study
on wave equations in two-dimensional and three-dimensional spaces. Chapter 7 is
devoted to the Laplace’s equation in two- and three-dimensional rectangular coordi-
nates and in polar coordinates. Moreover, the Laplace’s equation in annulus form is
also investigated by using the decomposition method and the separation of variables
method. Chapter 8 introduces a comprehensive study on nonlinear partial differen-
tial equations. Even though the subject is considered difficult and mostly addressed
in distinct books independent of linear PDEs, but it will be handled successfully and
elegantly by using the newly developed decomposition method and the variational
iteration method. Chapter 9 provides the reader with a variety of linear and non-
linear applications selected from mathematical physics, population growth models
and evolution concepts. The useful concept of solitons and the recently developed
concept of Compactons are thoroughly examined by using both traditional and new
methods. Chapter 10 is concerned with the numerical techniques. Empbhasis in this
chapter will be on combining the decomposition series solution, the variational it-
eration method, and the Padé approximants to provide a promising tool that can be
applied for further applications. Chapter 11 is concerned with the concepts of soli-
tons and compactons. In this chapter, the solitons and compactons are determined
by using prescribed conditions, a necessary condition for the applicability of the
decomposition method.

Part IT of this book gives a self-contained, practical and realistic approach to soli-
tary wave theory. The dissipation and the dispersion effects are thoroughly investi-
gated. Solitons play a prevalent role in many scientific and engineering phenomena.
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The newly discovered compactons: solitons with a compact support are also studied.
Part II of this book is devoted to use mainly the Hirota’s bilinear method, combined
with simplified version developed by Hereman and the tanh-coth method. Chapter
12 presents discussions about the dissipation and dispersion effects, analytic and
nonanalytic solutions, conservation laws and multiple-soliton solutions, tanh-coth
method, and Hirota’s bilinear method combined with the Hereman'’s simplified form
of the Hirota’s method. In Chapter 13, the family of the KdV equations is studied.
Multi-soliton solutions are obtained for only completely integrable equations of this
family. Compactons solutions are also examined. Chapter 14 is concerned with KdV
and mKdV equations of higher orders. The single solitons and the multiple-soliton
solutions for completely integrable equations are addressed by using the Hirota’s bi-
linear method. In addition, the Hirota-Satsuma equations and the generalized short
wave equations were investigated for multiple-soliton solutions.

Chapter 15 investigates many KdV-type of equations where soliton solutions and
multi-soliton solutions are obtained by using tanh-coth method and Hirota’s method
respectively. Chapter 16 is entirely devoted to study a family of well-known physi-
cal models for solitons and multi-soliton solutions as well. Some of these equations
are Boussinesq equation, Klein-Gordon equation, Liouville equation, sine-Gordon
equation, DBM equation, and others. Chapter 17 provides the reader with a com-
prehensive discussion of the literature related to Burgers, Fisher, Huxley, FitzHugh-
Nagumo equations and related equations. Most of these equations are characterized
by the dissipation phenomena that give kinks solutions. Chapter 18 presents a com-
prehensive study on two distinct types of equations that appear in solitary wave
theory. The family of Camassa-Holm equations is examined to obtain the nonana-
Iytic solution of peakons. On the other hand, the Schrodinger and Ginzburg-Landau
equations of different orders are studied in this chapter.

The book concludes with six useful appendices. Moreover, the book introduces
the traditional methods in the same amount of concern to provide the reader with
the knowledge needed to make a comparison.

1 deeply acknowledge Professor Louis Pennisi who made very valuable sugges-
tions that helped a great deal in directing this book towards its main goal. I also
deeply acknowledge Professor Masaaki Ito and Professor Willy Hereman for many
helpful discussions and useful remarks. I owe them my deepest thanks.

I am deeply indebted to my wife, my son and my daughters who provided me
with their continued encouragement, patience and support during the long days of
preparing this book.

The author would highly appreciate any note concerning any constructive sug-
gestion.

Saint Xavier University Abdul-Majid Wazwaz
Chicago, IL 60655 E-mail: wazwaz@sxu.edu
2009
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