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Preface to the Second Printing

This second printing of the book contains a few minor changes and
corrections. It is a pleasure for me to thank Peter Hess, Gunter Lumer,
R. de Roo, and Hans Sager for drawing my attention to many misprints
and some errors.

I am especially indebted to Shinnosuke Oharu, who went through the
whole book and recommended many valuable clarifications, modifications,
and corrections.

A. Pazy



Preface to the First Printing

The aim of this book is to give a simple and self-contained presentation of
the theory of semigroups of bounded linear operators and its applications to
partial differential equations.

The book is a corrected and expanded version of a set of lecture notes
which I wrote at the University of Maryland in 1972-1973. The first three
chapters present a short account of the abstract theory of semigroups of
bounded linear operators. Chapters 4 and 5 give a somewhat more detailed
study of the abstract Cauchy problem for autonomous and nonautonomous
‘linear initial value problems, while Chapter 6 is devoted to some abstract
nonlinear initial value problems. The first six chapters are self-contained
and the only prerequisite needed is some elementary knowledge of func-
tional analysis. Chapters 7 and 8 present applications of the abstract theory
to concrete initial value problems for linear and nonlinear partial differen-
tial equations. Some of the auxiliary results from the theory of partial
differential equations used in these chapters are stated without proof.
References where the proofs can be found are given in the bibliographical
notes to these chapters. 7

I am indebted to many good friends who read the lecture notes on which
this book is based, corrected errors, and suggested improvements. In partic-
ular I would like to express my thanks to H. Brezis, M.G. Crandall, and P.
Rabinowitz for their valuable advice, and to Danit Sharon for the tedious
work of typing the manuscript.

A. Pazy
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CHAPTER 1

Generation and Representation

1.1. Uniformly Continuous Semigroups of Bounded
Linear Operators
Definition 1.1. Let X be a Banach space. A one parameter family T(t),

0 <1 < co, of bounded linear operators from X into X is a semigroup of
bounded linear operators on X if

(i) T(0) = I, (1 is the identity operator on X).
(i) T(¢ + 5) = T(¢)T(s) for every ¢, s > 0 (the semigroup property).

A semigroup of bounded linear operators, 7(t), is uniformly continuous if

lim || T(¢) — I|| = 0. (1.1)
t10
The linear operator 4 defined by
D(A) = {x € X: limT—(t—)i:——xexists} (1.2)
110

and

_ +T
Ax = lim T(1)x —x _ d'T(t)x

lim p = for xe D(4) (1.3)

t=0

is the infinitesimal generator of the semigroup T(t), D(A) is the domain
of A.

This section is devoted to the study of uniformly continuous semigroups
of bounded linear operators. From the definition it is clear that if T(¢) is a
uniformly continuous semigroup of bounded linear operators then

lim [|7(s) = T(:)ll = 0. (1.4)



2 Semigroups of Linear Operators

Theorem 1.2. A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator.

PROOF. Let 4 be a bounded linear operator on X and set
= (14)”
T(1) = e = 3 in,—) (1.5)
n=0 :

The right-hand side of (1.5) converges in norm for every ¢ > 0 and defines,
for each such ¢, a bounded linear operator T(¢). It is clear that T(0) = I and
a straightforward computation with the power series shows that 7(s + 5)=
T(1)T(s). Estimating the power series yields

NT(e) = 1)) < ]| Ajfer 4

which imply that 7(r) is a uniformly continuous semigroup of bounded
linear operators on X and that 4 is its infinitesimal generator.

Let 7(¢) be a uniformly continuous semigroup of bounded linear opera-
tors on X. Fix p > 0, small enough, such that ||/ — p~'[£T(s) ds|| < 1.
This implies that p~! f(;’T(s)ds is invertible and therefore fo"T(s) ds is
invertible. Now,

h=(T(h) - l)fo"r(s) ds = h“(j:T(s + h)ds —fo”T(s) ds)
= h"(/pMT(s) ds — ./(;hT(s) ds)

P

and
T(t) -1
t

—A

<lAll- max ||T(s) = I|
O<s<r

and therefore

h=(T(h) = 1) = (h-'j"*"r(s) iy — h—'/ohr(s) ds)(jo"r(s) ds)—l

(1.6)

Letting £ 10 in (1.6) shows that h~'(T(h) — I) converges in norm and
therefore strongly to the bounded linear operator (T(p) — I)( fo"T( s)ds)”!
which is the infinitesimal generator of T(¢). (]

From Definition 1.1 it is clear that a semigroup 7(¢) has a unique
infinitesimal generator. If 7(¢) is uniformly continuous its infinitesimal
generator is a bounded linear operator. On the other hand, every bounded
linear operator A is the infinitesimal generator of a uniformly continuous
semigroup T'(¢). Is this semigroup unique? The affirmative answer to this
question is given next.
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Theorem 1.3. Ler T(t) and S(t) be uniformly continuous semigroups of
bounded linear operators. If

ling-’—)—;£=A =1imM (1.7)
110 1 (10 t

then T(t) = S(t) fort > 0.

PrROOF. We will show that given T > 0, S(¢) = T(¢) for 0 <t < T. Let
T > 0 be fixed, since ¢t = ||T(¢)|| and ¢t — || S(¢)|| are continuous there is a
constant C such that ||7(z)|| ||S(s)|]] < Cfor0 <s,t < T. Given e > 0 it
follows from (1.7) that there is a § > 0 such that

h="\T(h) — S(h)|| <e/TC for 0<h<3é. (1.8)

Let 0 <1 < T and choose n > 1 such that t/n < §. From the semigroup
property and (1.8) it then follows that

I7(e) = S(0)] =”T("ﬁ) - S("ﬁ)”

T((n = k)ﬁ)s(ﬂ) - T((n ki 1)%)s((k—:l—)’)”

n

o=k loz)- o)

Since & > 0 was arbitrary T(r) = S(¢) for 0 <t < T and the proof is
complete. a

n—1

=

k=0

n—1

£ ¥

k=0

[s(F)= crges=

Corollary 1.4. Let T(t) be a uniformly continuous semigroup of bounded linear
operators. Then

a) There exists a constant w > 0 such that NT()] < e“".

b) There exists a unique bounded linear operator A such that T(t) = e'A.
) The operator A in part (b) is the infinitesimal generator of T(t).

d) t - T(1) is differentiable in norm and

dT (1)
dt

= AT(1) = T(1) 4 (1.9)

PROOF. All the assertions of Corollary 1.4 follow easily from (b). To prove
(b) note that the infinitesimal generator of T(¢) is a bounded linear operator
A. A is also the infinitesimal generator of e'* defined by (1.5) and therefore,
by Theorem 1.3, T(r) = e'A. O



4 Semigroups of Linear Operators

1.2. Strongly Continuous Semigroups of Bounded
Linear Operators

Throughout this section X will be a Banach space.

Definition 2.1. A semigroup T(1), 0 < ¢ < o0, of bounded linear operators

on X is a strongly continuous semigroup of bounded linear operators if
limT(r)x =x  forevery xe€ X. (2.1)
110

A strongly continuous semigroup of bounded linear operators on X will be
called a semigroup of class C, or simply a Cy semigroup.

Theorem 2.2. Let T(t) be a Cy semigroup. There exist constants w > 0 and
M > 1 such that

IT(e)]| < Me“  for 0<t< 0. (2.2).

PROOF. We show first that there is an n > 0 such that || 7(¢)| is bounded
for 0 < ¢ < 7. If this is false then there is a sequence (z,} satisfying ¢, > 0,
lim,_, t, =0 and I7(¢,)ll = n. From the uniform boundedness theorem
it then follows that for some x € X, ||T(t,)x|| is unbounded contrary
to (2.1). Thus, ||T(¢)|| <M for 0 <t < 7. Since ||T(0)]] =1, M > 1. Let
w=n""log M > 0. Given t > 0 we have r = ny + § where 0 < § < 5 and
therefore by the semigroup property

IT(OI = NT(B)T(n)"|l < M™*' < MM'/7 = Me>. O

Corollary 2.3. If T(t) isa Co semigroup then for every x € X , t — T(t)xisa
continuous function from R} (the nonnegative real line) into X.

PROOF. Let ¢, h > 0. The continuity of + — T(¢)x follows from
IT(e+ h)x = T(e)x|| < | T()|NT(h)x — x|| < Me“!|| T(h)x — x||
and fort > h >0
IT(t = k)x = T(e)x|| < | T(¢ = h)|| ||x — T(h)x]|
< Me“'||x — T(h)x|. ]

Theorem 2.4. Let T(t) be a Co semigroup and let A be its infinitesimal
generator. Then

a) For x EKX,

3 1 re+n
lim ;f’ T(s)xds = T(¢)x. (2.3)
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t
b) For x € X, f T(s)xds € D(A) and
0

A(fo'r(s)xds) = Pltje=x. (2.4)
c) For x € D(A), T(t)x € D(A) and
%T(t)x = AT(1)x = T(¢) Ax. (2.5)
d) For x € D(A),
T(t)x — T(s)x = _/:T(T)Axd'r = [S'AT(T)xdT. (2.6)

PROOF. Part (a) follows directly from the continuity of ¢+ — T(¢)x. To prove
(b) let x € X and h > 0. Then,

L(%'/JT(S)x ds

-};/(;[(T(s + h)x — T(s)x) ds

= 7]2'['+hT(S)de - lth(s)xds*

and as 4 |0 the right-hand side tends to T(¢t)x — x, which proves (b). To
prove (c) let x € D(A) and h > 0. Then

T(h) T(I) T(,)(T(h) ) - T(1)Ax as h|O0.

(2.7)
Thus, T(t)x € D(A) and AT(t)x = T(t)Ax. (2.7) implies also that

L T(1)x = AT(1)x = T(1) 4x,

i.e., that the right derivative of T(¢)x is T(t) Ax. To prove (2.5) we have to
show that for ¢ > 0, the left derivative of T()x exists and equals T(t)Ax.
This follows from,

[T(r)x - T(t—h)x

lim 7

hl0O

- T(t)Ax]

— lim T(z — h)[”—h);‘;" - Ax] + lim (T(t = k) dx — T(r) Ax),
hl0 h L0

and the fact that both terms on the right-hand side are zero, the first since

x € D(A) and ||T(¢ — h)|| is bounded on 0 < 4 <  and the second by the

strong continuity of 7(¢). This concludes the proof of (c). Part (d) is

obtained by integration of (2.5) from s to ¢. O

Corollary 2.5. If A is the infinitesimal generator of a C, semigroup T(t) then
D(A), the domain of A, is dense in X and A is a closed linear operator.
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PrOOF. For every x € X set x, = 1/t[/T(s)x ds. By part (b) of Theorem
2.4, x, € D(A) for t > 0 and by part (a) of the same theorem x, = x as
t 10. Thus D(A), the closure of D(A), equals X. The linearity of A4 is
evident. To prove its closedness let x, € D(A), x, = x and Ax, = y as
n — co. From part (d) of Theorem 2.4 we have

T(t)x, — x, = fo’r(s)Axn ds. (2.8)

The integrand on the right-hand side of (2.8) converges to T(s)y uniformly
on bounded intervals. Consequently letting n — oo in (2.8) yields

T(t)x — x = fo’r(s)yds. (2.9)

Dividing (2.9) by ¢ > 0 and letting | 0, we see, using part (a) of Theorem
2.4, that x € D(A) and Ax = y. a

Theorem 2.6. Let T(t) and S(t) be C, semigroups of bounded linear operators
with infinitesimal generators A and B respectively. If A = B then T(t) = S(1)
fort > 0.

PROOF. Let x € D(A) = D(B). From Theorem 2.4 (c) it follows easily that
the function s — T(¢ — 5)S(s)x is differentiable and that

d%T(t —5)S(s)x = —AT(t —s)S(s)x + T(t — s) BS(s)x

—T(t —s5)AS(s)x + T(t — s)BS(s)x = 0.

Therefore s — T(t — 5)S(s)x is constant and in particular its values at
s =0 and s =t are the same, i.e., 7(¢)x = S(¢)x. This holds for every
x € D(A) and since, by Corollary 2.5, D(A) is dense in X and T(¢), S(¢)
are bounded, T(¢t)x = S(¢)x for every x € X. 0

If A is the infiditesimal generator of a C, semigroup then by Corollary
2.5, D(A) = X. Actually, a much stronger result is true. Indeed we have,

Theorem 2.7. Let A be the infinitesimal generator of the C, semigroup T(t). If
D(A") is the domain of A", then (M °_ D(A") is dense in X.

PROOF. Let 9 be the set of all infinitely differentiable compactly supported
complex valued functions on ]0, co[. For x € X and ¢ € 9 set

y=x(9)= [“o()T(s)xds. (2.10)
If A > 0 then
T(h})z = Iy - %[)”q}(s)[T(s +h)x — T(s)x] ds

=f()”%[qp(s_h)—q;(s)]r(s)xds. (2.11)
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The integrand on the right-hand side of (2.11) converges as h |0 to
—@'(s)T(s)x uniformly on [0, oo[. Therefore y € D(A4) and
. T(h) -1 o0
Ay = lim ———y = — '(s)T(s)x ds.
p = lim =g fo ¢'(s)T(s)
Clearly, if @ € % then ¢, the n-th derivative of ¢, is also in 9 for
n = 1,2,... . Thus, repeating the previous argument we find that y € D(A4")

Ay = (—l)"Lw¢‘"’(s)T(s)xds for n=1,2,...

and consequently y € N} _,D(A"). Let Y be the linear span of {x(p):
x €X, ¢ €D). Y is clearly a linear manifold. From what we have proved
so far it follows that Y € N, _,D(A"). To conclude the proof we will show
that Y is dense in X. If Y is not dense in X, then by Hahn-Banach’s
theorem there is a functional x* € X*, x* # 0 such that x*(y) = 0 for
every y € Y and therefore .

j(;wtp(s)x"'(T(s)x) ds = x*(j(;w(p(s)T(s)x ds) =0. (2.12)

for every x € X, ¢ € . This implies that for x € X the continuous
function s — x*(7(s)x) must vanish identically on [0, o[ since otherwise, it
would have been possible to choose ¢ € 9 such that the left-hand side of
(2.12) does not vanish. Thus in particular for s = 0, x*(x) = 0. This holds
for every x € X and therefore x* = 0 contrary to the choice of x*. ]

We conclude this section with a simple application of Theorem 2.4.

Lemma 2.8. Let A be the infinitesimal generator of a C, semigroup T(t)satis-
ping |T(0)|| < M for t > 0. If x € D(A?) then

Il 4x||> < aM?|| A%x|| || x||. (2.13)
PROOF. Using (2.6) it is easy to check that for x € D(A4?)
" T(t)x — x =tAx + fol(t — 5)T(s)A%x ds.
Therefore,
lAx] < ' (N T(e)x]| + ||x||)+r'f0'(r — $)IIT(s) A%x||ds

2M Mt
<= lxlh+ = 42| . (2.14)
Here we used that M > 1 (since || 7(0)|| = 1). If A%2x = 0 then (2.14) im-

plies Ax =0 and (2.13) is satisfied. If A2x # 0 we substitute ¢ =
2||x||'/?||A%x|| /% in (2.14) and (2.13) follows. 0O

EXAMPLE 2.9. Let X be the Banach space of bounded uniformly continuous
functions on ] — oo, oo[ with the supremum norm. For f € X we define

(T()f)(s) = f(1 +5).
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It is easy to check that T(¢) is a C, semigroup satisfying [|7(¢)|| < 1 for
t = 0. The infinitesimal generator of 7(¢) is definéd on D(A) ={/f: f€ X,
[’ exists, f € X} and (Af)(s) = f'(s) for f € D(A). From Lemma 2.8 we
obtain Landau’s inequality

(suplf'(s)1)* < 4(suplf”(s)|)(sup|f(s)]) (2.15)

where the sup are taken over | — oo, oo[. Example 2.9 can be easily modified
to the case where X = L?(—o00,0), | < p < oo.

1.3. The Hille-Yosida Theorem

Let T(r) be a C; semigroup. From Theorem 2.2 it follows that there are
constants w > 0 and M > 1 such that |T(1)|| < Me“' fort > 0. If w = 0,
T(t) is called uniformly bounded and if moreover M = 1 it is called a C,
semigroup of contractions. This section is devoted to the characterization of
the infinitesimal generators of C, semigroups of contractions. Conditions on
the behavior of the resolvent of an operator A4, which are necessary and
sufficient for 4 to be the infinitesimal generator of a C, semigroup of
contractions, are given.

Recall that if 4 is a linear, not necessarily bounded, operator in X, the
resolvent set p(A) of A is the set of all complex numbers A for which
Al — Aisinvertible, i.e., (A\] — A)~'is a bounded linear operator in X. The
family R(A: A) = (Al — A)™', A € p(A) of bounded linear operators is
called the resolvent of 4.

Theorem 3.1 (Hille-Yosida). 4 linear (unbounded ) operator A is the infini-
tesimal generator of a C, semigroup of contractions T(t), t = 0 if and only if =

(i) A is closed and D(A) =
(i1) . The resolvent set p(A) of A contains R* and for every A > 0

IR(: Al < 5. (.1)

PROOF OF THEOREM 3.1 (Necessity). If 4 is the infinitesimal generator of a
C, semigroup then it is closed and D( ) = X by Corollary 2.5. For A > 0
and x € X let

R(M)x = /;we‘)"T(l)xdl. (3.2)

Since 1 — T(¢)x is continuous and uniformly bounded the integral exists as
an improper Riemann integral and defines a bounded linear operator R(A)
satisfying

IRA)xl < ["e I T(0)xldr < 3 1l (3.3)



