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Lesson 1 Periodic Signals

1.1 Time-Domain Description

The fact that great majority of functions which may usefully be considered as
signals are functions of time lends justification 1o the treatment of signal itheory in terms
of time and of frequency. A periodic signal will therefore be considered to be one which
repeats itself exactly every T seconds, where T is called the period of the signal
waveform; the theoretical treatment of periodic waveforms assumes that this oxact
repetition is extended throvghout all time, both past and future. In practice, of course,
signals do not repeat themselves indefinitely. Nevertheless, a waveform such as the
output voltage of a main rectifier prior to smoothing does repeat itself very many times,
and it analysis as 2 strictly periodic signal yields valuable results. [ 1n other cases, such
as the electrocardiogram, the waveform is quasi-periodic and may usefully be treated as
truly periodic for some purpose, It is worth nothing that a truly repetitive signal is of
very little interest in a communication channel, since no further information is conveyed
after the first cycle of the waveform has been received. One of the main reasons for
discussing periodic signals is that a clear understanding of their analysis is a great help
when dealing with periodic and random ones,

A complete time-domain description of such a signal involves specifying its value
precise at every instant of time. In some cases this may be done very simply using
mathematical notation. Fortunately, it is in many cases useful to describe only certain
aspects of a signal waveform, or to represent it by a mathematical formula which is only
approximate. The following aspects might be relevant in particular cases:

(1) the average value of the signal;

(2) the peak value reached by the signal;

(3) the proportion of the total time spent between value a and &;

(4) the period of the signal.

If it is desired to approximate the waveform by a mathematical cxpression, such as
s polynomial expansion, a Taylor series, or a Fourier series may be used. A polynomial
of order n having the form

) =astattatt +atd + e Fat’ (1-1>
may be used to fit the actual curve at (n+1) arbitrary points. The accuracy of fit will

1



generally improve as number of polynomial terms increases. I1 should also he noted that
the error Figure between the true signal waveform and the polynomial will normally
become very large away from the region of the fitted points, and that the polynomial
itself cannot be periodic. Whereas a polynomial approximation fits the actual waveform
at a number of arbitrary points, the alternative Taylor series approximation provides a
good fit to a smooth continuous waveform in the vicinity of one selected point. The
coefficients of the Taylor series are chosen to make the series and its derivatives agree
with the actual waveform at this point. The number of terms in the series determines to
what order of derivative this agreement will extend, and hence the accuracy with which
series and actual waveform agree in the region of point chosen, The general form of the

Taylor series for approximating a functlion in the region of the point is given by

o B dfta) | G—a  df@ | ., G—a)  df(a)
£y = fl@)+ (t—a) X S 4- Lot 5 S0 4 p S S

(1-2>

Generally speaking, the {it to the actual waveform is good in the region of the point
chosen, but rapidly deteriorates to either side, The polynomial and Taylor series
descriptions of a signal waveform are therefore only to be recommended when one is
concerned to achieve accuracy over a limited region of the waveform. The accuracy
usually decreases rapidly outside this region, although it may be improved by including
additional terms (so long as ¢ lies within the region of convergence of the series). 21 The
approximations provided by such methods are never periodic in form and cannot
therefore be considered ideal for the description of repetitive signals,

By contrast the Fourier series approximation is well suited to the representation of a
signal waveform over an extended interval. When the signal is periodic, the accuracy of
the Fourier series description is maintained for all time, since the signal is represented as
the sum of a number of sinusoidal functions, which are themselves periodic, Before
examining in detail the Fourier series method of representing a signal, the background to

what is known as the ‘frequency-domain’ approach will be introduced.

1.2 Frequency-Domain Description

The basic conception of frequency-domain analysis is that a waveform of any
complexity may be considered as the sum of a number of sinuscidal waveforms of
suitable amplitude, periodicity, and relative phase. "® A continuous sinusocidal function
{sinwt) is thought of as a ‘single frequency’ wave of frequency radians per second, and

the frequency-domain description of a signal involves its breakdewn into a number of

2



such basic functions. This is the method of Fourier analysis.

There ate a number of reasons why signal representation in terms of a set of compo-
nent sinusoidal waves occupies such a ceniral role in signal analysis. The suitability of a
set of periodic Functions for approximating a signal waveform over an extended interval
has already been mentioned, and it will be shown later that the use of such techniques
causes the error between the actual signal and its approximation to be minimized in a
certain important sense, A further reason why sinusoidal funciions are so important in
signal analysis is that they occur widely in the physical world and are very susceptible to
mathematical treatment; a large and extremely important class of electrical and mechani-
cal systems, known as *linear systems’, responds sinusoidally when driven by a sinu-
soidal disturbing function of any frequency. All these manifestations of sinusoidal func-
tion in the physical world suggest that signal analysis in sinusoidal terms will simplify
the problem of relating a signal to underlying physical causes, or to the physical proper-
ties of a system or device through which it has passed. Finally, sinusoidal functions
form a set of what are called ‘orthogonal function” . the rather special properties and ad-

vantage ol which will now be discussed.

1.3 Orthogonal Functions

1.3.1 Vectors and Signals

A discussion of orthogonal functions and of their value for the description of signals
may be conveniently introduced by considering the analogy between vectors and signals,
A veetor is specified both by its magnitude and direction, familiar examples being force
and velocity. Suppose we have two V,and V,; geometrically, we define the component
of vector ¥, along vector ¥V, by constructing the perpendicular form the end of ¥V, onto V.
We then have

V, = CV,+V, {1-3)

where vector V, is the error in the approximation. Clearly, this error vector is of
minimum length when it is drawn perpendicular 1o the direction of ¥,. Thus we say that
the component of vector V, along vector ¥, is given by C,V;, where C;; is chosen such
as to make the error vector as small as possible. A familiar case of an orthogonal vector
system is the use of three mutually perpendicular axes in co-ordinate geometry,

There basic ideas about the comparison of vectors may be extended to signals.
Suppose we wish to approximate a signal f7 () by another signal or function f,(z) over

a certain interval £, <C7<Ct,: in other words,



Frie) == Cyy folt for ¢ <Tt<li,

We wish to choose C); 1o achieve the best approximation, If we define the error function

f.(ty = () — Cia f2 () (1-4)
it might appear at first sight that we should choose C;; so as to minimize the average
value of f.(¢) over the chosen interval, The disadvantage of such an error criterion is
that large positive and negative errors occurring at different instants would tend to
cancel each other cut, This difficulty is avoided if we choose 1o minimize the average
squared-errot, rather than the crror itself (this is equivalent to minimizing the square
root of the mean-squared error ,or ‘r.m. s’ error). Denoting the average of f1(2) by ¢,
we have

T G (VDR _
'(:,—z)Jf()d"‘ Q—:;)j;,[fl(” Cie (DTt (1-5)

£

Differentiating with respect to Cj; and pulting the resulting cxpression equal to zero

gives the value of C,, for which is a minimum. "** Thus

_d 4_[ o
dcw{(!,; L) — Ci fa ()] d.‘l} 0

Expanding the bracket and changing the order of integration and differentiating gives

Cpp = J f'](z)fz(t)dr/rﬁ(r)dz (1-6)

1.3.2 Signal description by sets of orthogenal function

Suppose that we have approximated a signal f; (¢) over a certain interval by the
function f.(2) so that the mean square error is minimized, but that we now wish to
improve the approximation. It will be demonstrated that a very attractive approach is to
express the signal in terms of a set of function [, (&), f3 (2}, fi(t), etc. . which are

mutually orthogonal. Suppose the initial approximation is

Fie) = Cp (0 (1-7)
and that the error is further reduced by putting
f](f) %(jlzfz(f)+C]{f{(t) (1_8)

where £, (2} and f;(1) are orthogonal over the interval of interest, Now that we have
incorporated the additional 1erm C, 5 (2}, it is interesting to find what the new value of
must be in order that the mean square error is again minimized. We now have

Fly = FL) —Cu f- ) —Cu fi () (1-9

and the mean square error in the interval ¢ <I¢<C¢; is therefore

= j [ £ () = Coa () f2(2) — Coy () f5 (£ T2 dle (1-10)



Differentiating partially with respect to Cy, to find the value of Ci, for which the mean
square error is again minimized, and changing the order of differentiation and

integration, we have again ™

Cp = J _ﬂ(z)fz(.c)d:/rfs(ndz (1-11)

In order words, the decision to improve the approximation by incorporating an
additional term in does not require us to modify the coeflicient, provided that f, (1) is
orthogonal to f, (¢} in the chosen time interval. ') By precisely similar arguments we
could show that the value of C;; would he unchanged if the signal was to be
approximated by f, (¢} alone.

This imporiant result may be extended to cover the representation of a signal in
terms of a whole set of orthogonal functions, The value of any coefficient does not
depend upaen how many functions from the complete setl are used in the approximation,
and is thus unaltered when further terms are included. The usc of a set of orthogonal
functions for signal description is analogous to the use of three mutually perpendicular
(that is , orthogonal) axes {or the description of a vector in three-dimensional space,
and gives rise to the notion of a ‘signal space’. 1 Accurate signal representation will
often require the use of many more than three orthogonal functions, so that we must
think of a signal within some interval ; <Z¢<(t; as being represented by a point in a
multidimensional space.

To summarize, there are a number of sets of orthogonal functions available such as
the so-called Legendre polynomials and Walsh functions for the approximate description
of signal waveform, of which the sinuscidal set is the most widely used, 11 Sets
involving polynomials in ¢ are not by their very nature periodic, but may sensibly be
used to describe one cycle (or less) of a periodic waveform; outside the chosen interval,
errors between the true signal and its approximation will normally increase rapidly. A
description of one cycle of a periodic signal in terms of sinusoidal function will,

however, be equally valid for all time because of the every member of the orthogonal.

1.4 The Fourier Series

The basis of the Fourier series is that complex pericdic waveform may be analyzed
into a number of harmonically related sinusoidal waves which constitute an orthogonal
set. If we have a periodic signal f(z) with a period equal to T, then f{(#) may be

represented by the series

fley = A, + EA,,cosnwlt-i— ZB,,sinnwﬁ (1-12)
=1 a—1
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where @, =2x/T. Thus f(z) is considered to be made up by the addition of a steady
level A, to a2 number of sinusoidal and cosinusoidal waves of different frequencies. The
lowest of these frequencies is a (radians per second) and is called the ‘fundamental’ ;
waves of this frequency have a period equal to that of the signal. Frequency Zw:is called
the ‘second harmonic’, 3w is the “third harmonic’, and so on. Certain restrictions,

known as the Dirichlet conditions, must be placed upon F(z) for the above series to be
valid, The integralj | £(2) | dt over a complete period must be {inite, and may not have

more than a finite number of discontinuities in any finite interval. Fortunately, these

conditions do not exclude any signal waveform of practical interest.

1.4.1 Evaluation of the coefficients
We now turn to the question of evaluating the coefficients A,, A, and B,. Using

the minimum square error criterion described in foregoing text, and writing for the sake

of convenience, we have
A, = lj” Frydx
2ﬂ T

A, = ﬂ () cosnzda (1-13)

B, = %r Fl)sinnrdx

Although in the majority of cases it is convenient for the interval of integration 1o be
symmetrical about the origin, any interval equal in length to one period of the signal
waveform may be chosen,

Many waveforms of practical interest are either even or odd functions of time. If
F(2)is even then by definition f(#)= f(—1), whereas if it is odd fQ)=—f(—), I
F(1) is even and we multiply it by the odd function sinnant the result is also odd. Thus
the integrand for every B, is odd. Now when an odd function is integrated over an
interval symmetrical about t=0, the result is always zero. Hence all the B coefficients
are zero and we are Jeft with a series containing only cosines. By similar arguments, if
[ is odd the A coefficients must be zero and we are left with a sine series, It is indeed
intuitively clear that an even function can only be built up from a number of other
functions which are themselves even ., and vice versa,

We have already seen how the Fourier series is simplified in the case of an even or
odd function, by losing either its sine or its cosine terms. A different type of

simplification occurs in the case of a waveform possessing what is know as ‘half-wave

6



symmetry’. In mathematical terms, half-wave symmetry exists when
fly =— fFG+T/2) (1-14)
In other words any two values of the waveform separated by T/2 will be equal in
magnitude and opposite in sign. Generalizing, only odd harmonics exhibit half-wave
symmetry, and therefore a wavelorm of any complexity which has such symmetry
cannoi contain even harmonic components, Conversely, a wavelorm know to contain any
second, fourth, or other harmonic components cannot display half-wave symmetry,
Usually, we have always integrated over a complete cycle to derive the coefficients.
However in the case of an odd or even function it is sufficient, and often simpler, to
integrate over only one half of the eycle and multiply the result by 2. Furthermore if the
wave is not only even or odd but also display haif-wave symmetry, it is enough to
integrate over one quarter of a cycle and muliiply by 4. These closer limits are adequate
in such cases the function that is being integrated is repetilive, repeating twice within

one period when it also exhibit half-wave symmetry,

1.4,2 Choice of time origin, and waveform power

The amount of work involved in caleculating the Fourier series coefficients for a
particular waveform shape is reduced if the waveform is either even or odd, and this may
often be arranged by a judicious choice of time origin (that is, shift of time origin), '
This shift has therefore merely had the effect of converting a Fourier series containing
only sine terms into one containing only cosine terms; the amplitude of a component at
any one frequency is, as we would expect, unaltered, For a complicated waveform
which is neither even nor odd, it must be expected to include hoth sine and cosine terms
in its Fourier series,

As the time origin of a waveform is shifted, the various sine and cosine coefficients
of its Fourier series will change, but the sum of the squares of any two coefficients A,
and B, will remain constant, which means that the average power of the waveform, a
concepi familiar to electrical engineers, is unaltered,

The abaove ideas lead natyrally to an alternative trigonometric of the Fourier series.
If the two fundamental components of a waveform are

Ajcosant and Bisinawt

their sum may be expressed in an alternative form using trigonometric identities

Arcoswit+ Bisineant =m—-4?j?_?7cos(m, { — arctan %)
1

ﬂ«f(Af*{-Bf)sin(w;t-i—arctan %) (1-13)
1



Thus the sine and cosine components at a particular frequency are expressed as a single
cosine or sine wave together with a phase shift. If this procedure is applied to all

harmonic components of the Fourier series, we get the alternative forms

Fy = Ay F 2(3,,(?05(?@13—95,,) or f() =A,+ Ecwsin(rmlz-ﬁ-ﬁn)(l—lﬁ)
N N

where
C, =/ A + B ,¢, = arctan(B,/A,),8, = arctan(A,/B,) (1-17>
Finally, we note that sine the mean power represented by any component wave is
(A - BOY/2=CE/2 (1-18)

and the power represented by the term A; is simply A?, the total average waveform
power is equal to

_ 1w
P = A+ 325G (1-19)

ma=]
But P may be expressed as the average value over one period of | f{¢)1*,using again
the convention that is considered 1o represent a voltage waveform applied across a ohm

resistor. Hence

A+ LS _ij : ;
P=Al+5 2 C =] @l (3-20)

n==1
This result is a version of a more general one known as Parseval’s theorem, and shows
that the total waveform power is equal to the sum of the powers represented by its
individual Fourier components. It is, however, important to note that this is only true

hecause the various component waves are drawn from an orthogonal set,

Words and Expressions

accuracy [ 'ekjurasi] n. FEWM B OEE

amplitude ['semplitjud] 7. IFEEE

aperiodic [ 'ecipiari'adik] adj. JEJE B

approach [a'prout|] n. ¥[B] M ERKIE] RER. FE
approximation [aproksi'meifon] n. ¥ LL{E

arbitrary [ 'abitrari | adj. {£589

channel ['tfeenl] #n. {HiE . 40iH

coefficient [ kaui'fifant ] n, B

convergence | kon'voidgens | n. 4K

conversely [ kon'vasli] adj, B, 58



