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MARKED RULER AS A TOOL FOR
GEOMETRIC CONSTRUCTIONS—
FROM ANGLE TRISECTION TO
N-SIDED POLYGON

TEAM MEMBER
Edward Sin-Tsun Fan
TEACHER
Ms. Fei Wong
SCHOOL
Sha Tin Government Secondary School

1 Introduction

Trisecting an arbitrary angle with a compass and straight-
edge was one of the famous ancient Greeks unsolved con-
struction problems. Together with duplicating the cube,
these problems have been pending to be resolved for more
than 2000 years.

Plato (427-347 BC) defined clearly the rules of ruler and
compass construction, which implies that the marks or scales
in the ruler should not be relevant to the geometric con-
struction. Many learned people tried employing different
tools and methods to tackle the problem, in particular, the
interesting and simple construction algorithm proposed by
Archimedes (287-212 BC) who had employed a marked ruler
and compass to solve the trisecting problem, which was very
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close to the Platos rules.

In 19th Century, Pierre L. Wantzel (1814-1848) proved
in 1837 that based upon Plato’s criteria, it is possible to
trisect an arbitrary angle. The problem became even more
interesting after it was proved to be possible because of the
“magic” marked ruler, which have opened a new area for the
study of geometric constructions with the marked ruler and
a compass.

Theorem 1.1 If we have a marked ruler and a compass,
then it is possible to trisect an arbitrary angle.

Proof. Archimedes proved this theorem by giving a construc-
tion algorithm. As shown in Fig. 1 below, let ZAOB be the
angle being trisected and the lengths |OA| = |OB| = 1,
which is the distance between the two marks on the ruler.
Draw a semicircle centered at O from B through A. If we
mark C and D such that C is on the semi-circle and D is the
intersection of the lines OB and AC with |CD| = 1, then
/AOB =3ZADB.

2t

3t

Let ZADB =t. Then ZCOD =t and ZLOCA = Z0AC
= 2t (base angles of isosceles triangle).

By the interior angle sum of triangle, ZAOC = 7 — 4t.
Hence,

/AOB = /COD—/AOC = n—t—(n—4t) = 3t = 3/ADB.
O
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In Theorem 1.1, Archimedes made use of the so-called
marked ruler instead of a typical straight edge in the con-
struction. Some people criticized that Archimedes did not
respect the conventional definition of the ruler and his ap-
proach was not strict enough hence it was not commonly
accepted.

In spite of this, it was quite natural, when compared with
using conics, trisectrix or some other strange curves to give a
solution to an angle trisection, the marked ruler was an easy
available tool in real life. One should appreciate why adding
two marks on a ruler makes the impossible to be possible. In
this project, we try to give some terminology of the marked
ruler and clarify which types of geometric constructions are
possible by using the marked ruler and a compass.

Definition 1.2 A ruler or more precisely a straight edge
with two notches on it is called a marked ruler. Without
loss of generality, the distance between the two notches is
taken to be 1.

From definition 1.2, we notice that the marked ruler in-
troduces the concept of unit length into the system of geo-
metric construction. It allows us to cut off equal distance
on a straight line in particular, and we will show that the
marked ruler is much more useful with the help of com-
pass in the subsequent sections. In order to study geometric
construction algebraically, we will introduce a rectangular
coordinate system on the two dimensional Euclidean Space.
Moreover, by the end of this report, we will study how the
problem of constructing regular n-sided polygon is related
to the construction by using marked ruler and compass.

Now, let us define the meaning of constructible points
and constructible curves.
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Definition 1.3 A constructible curve is a curve constructed
from given quantities such as points, lengths, etc, which are
provided by given points and constructible points. A con-
structible point is a point of intersection of two constructible
curves.

Our task is getting clearer that we treat construction as
drawing the constructible curves. If we know what curves
marked ruler and compass can draw, we will know the prop-
erties of the constructible points. Before going deep into our
main goal, lets take a brief review on the general construc-
tion.

2 Classification of Construction

Up to this moment, our understanding on the term “con-
struction” is too vague for a mathematical theory to build
on. In the following sections, we will give a clear definition of
“construction”, then classify different types of construction
and their relative field of extension.

Definition 2.1 A construction C is defined to be a finite
set of constructible points {0,u, Ag, A1, As,...,An}, where
0 = (0,0), u = (1,0) and Ag = (0,1), such that An4y
is a point of intersection of any two of the constructible
curves vy; constructed from the points in the sub-construction
Cr = {0,u,Ag, A1, A, ..., A} where k = 1,2,... n under
specific construction rules.

Definition 2.2 Let C = {0,u, Ag, A1, A, ..., A,} be a con-
struction of n steps and Cy, = {0, u, Ag, A1, Aa, . .., Ar} where
k < n be a sub-construction of C. Also, let 21, 22, ..., 2z, be
the complex numbers that represent the points A1, As, ..., A,
respectively. Then, K[C] = Q(i, 21, 22, ..., z,) is defined to
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be the field of extension of Q by construction C. Note that
KIC] is the smallest field that contains i, 21,...,2n and we

have
K[Ck] = K[Cr-1](zk) for k=1,2,...,n

Remark: Since 0 = (0,0), u = (1,0) and Ay = (0,1), it is
easy to see that K[Co] = Q(i).

Definition 2.3 A construction is called plane if it can be
solved by using ruler and compass only.

A construction is called solid if it can be solved by using
conic sections only.

A construction is called higher dimensional if it is not plane
or solid.

Remark: This classification was introduced by Pappus, but
I replace the term “linear” by “higher dimensional” since it
will be more appropriate.

Definition 2.4 For plane constructions, a constructible str-
aight line is a line, which passes through two constructible
points; and a constructible circle is a circle centered at a con-
structible point, which passes through another constructible
point.

Before we state the well-known theorem for ruler and
compass construction, we give a lemma, which is used to
prove this theorem.

Lemma 2.5 Iftwo circles intersect or a circle and a straight
line intersects, where the coefficients of the equations of the
circles and straight lines are in field K, then the coordinates
of the point of intersection lie in a field of quadratic exten-
ston over K.
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Proof. Firstly, let y = mx +c and 2+t +drtey+f=0
be the equations of a straight line and a circle with m, ¢, d,
e, f € K respectively. Then, by solving the two equations,
we have

22+ (mz+c)’+dr+e(mr+c)+f=0
= (1 +m?)z?+ (2mc+d+me)z +c* +ce+ f=0.

Note that the coefficients of the above equation are in K, its
roots lie in a field of quadratic extension of K. Also from
y = mz + ¢, y is linear to = and so the coordinates of the
points of intersection lie in a field of quadratic extension over
K.

Secondly, let z2 4+ y% + dix + e;y + f1 = 0 and 22 + 3% +
dox + eay + fo = 0 be the equations of two distinct circles
with dy, ds, €1, €2, f1, f2 € K. Then by subtracting the two
equations, it yields a straight line (do — dy)z + (e2 —e1)y +
(f2 — f1) = 0 with its coefficients in K. Hence, by the above
argument, the coordinates of the points of intersection lie in
a field of quadratic extension over K. O

Theorem 2.6 A point (z,y) has a plane construction if and
only if x + yi € C lies in a sub-field K of C such that 3K,
1=0,1,...,n, satisfying that

Q=KocK;CcKsC---CK,=K
and the index [K; : K;j_1]=1o0r2 forj=12,...,n.

Proof. Let C = {0,u, Ag, A1,...,A,_1} be a plane con-
struction with A,—1 = (z,y). It is clear that when two
constructible lines intersect, no extension of field is needed.
Also note that the extension Q(i) is of degree 2. Then, by
lemma 2.5, we must have [K[Cr41] : K[Ck]] = 1 or 2, where
k=1,2,...,n—2.
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Hence, by letting K;+1 = K[C;], we have
QZK()CK;[ CKQC"'CKn:K[C]:K

and the index [K; : K;1] =1,2for j =1,2,...,n.
Conversely, given a tower of fields

Q=KOCK1CK2C"'CKn=K

where the index [K; : Kj_4]=1or2for j=1,2,...,n. It
suffices to verify that there is a plane construction associated
to each step of field extension. If [K; : K;j_1] = 1, then
K; = mathrm K;_1 and the result is trivial. If [K; : K;_1] =
2, let 2; = z; + y;i such that K; = Kj_,[2;] where z; ¢
K, for j = 1,2,...,n. Since the degree of extension is
2, both z; and y; are roots of certain quadratic equations
with coeflicients in K;_1, say, 22 +ar+b =0 and 3% +
py + q = 0 respectively. Then by constructing the circle
z? 4+ y? +ax+b = 0 and the line y = 0, we solve z; as the z-
coordinate. Similarly, y; can be obtained as the y-coordinate
of the intersection of the circle z2 + 2 + px + ¢ = 0 and the
line z = 0. Hence z; = z; + y;i has a plane construction. [J

Remark: In fact, the index [K; : K;_;] = 1 actually means
that K; = K; 1, so we can omit 1 in the preceeding theorem.

Next, we want to show is that every point with solid
construction lies in a 2-3-tower over Q. So we should first
show that every points are closed under quartic equation
and on the other hand every equation of degree at most 4 is
solvable by solid construction.

Lemma 2.7 Fuvery points of intersection of any two conic
sections are roots of an equation of degree at most four.

Proof. Let Ax? + Bixy + Ciy*+ Diz + Eyy+ F1 =0 and
Az? + Boxy + Coy? + Doz + FEoy + F> = 0 be two distinct
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conic sections. Then by Bezout’s Theorem, which states that
two algebraic plane curves with degree m and n respectively
and with no common component have exactly mn points of
intersection counting multiplicity and points at infinity, it
follows that there are at most mn points of intersection for
any two algebraic curves with degree m and n respectively.
The points of intersection of the two conic sections, each
of degree 2, when solving together, are therefore roots of
quartic equations for irreducible cases, and thus yielding four
distinct intersections. For reducible cases, the degree of the
equation will be even lower. So every points of intersection
are roots of an equation of degree at most four.

Practically, one may transform the first equation in the
form

2_ A1, B D, E. B

Yy = Cl:l}—a(lfy—afl;—ay—a' fOI'Cl?éO

and it is used to reduce the degree of the second equation
in y. Eventually, a quartic equation maybe reducible or
irreducible is yielded. If C; = C3 = 0, then we can eliminate
y without much difficulty and also an equation of degree not
exceeding four is yielded. O

Lemma 2.8 Trisecting an arbitrary angle has a solid con-
struction.

Proof. Whenever we can construct an angle o, it is equiva-
lent to say that we can construct the length cos @, since one
can readily construct a right angle triangle with hypotenuse
1 and one side cos @ where the included angle is a from ei-
ther one condition. Suppose 36 be the angle to be trisected,
then cos 36 is constructible and we aim at showing that cos
is also constructible.
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Consider the two conic sections

{y=f,
zy — 3z — 2cos 36 = 0.

Since both of them have their coefficients in Q(cos 36), they
are both constructible. Solving them together yields a cubic
equation

2 — 3z —2cos30 =0

2
It is not too difficult to show that 2cos 8, 2cos (9 + g?‘l’)

4
and 2cos | 0+ 56) are the roots of it. Therefore cos@ is

constructible and trisecting an arbitrary angle has a solid
construction. O

Lemma 2.9 Find the cube root of arbitrary length has a
solid construction.

Proof. Suppose the length [ is constructible. We are aiming
to show that </7 is also constructible.
Consider the two conic sections,

{yzﬁ,

zy =1,

Both of them have their coefficients in Q(l), so they are
constructible. Then by solving them together, we yield

and so /1 is the only real root that satisfies this equa-
tion. Hence the cube root of arbitrary length has a solid
construction. ]
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Theorem 2.10 All equations of degree at most 4 can be
solved if and only if one can trisect an angle and find that
cube root for arbitrary length in addition to the use of ruler
and compass.

Proof. [=] Suppose all equations of degree at most 4 can be
solved. Then the equation 3 — a = 0 can be solved and we
can find the cube root. As shown in lemma 2.8, arbitrary
angle 3a is trisectable if and only if cosa is constructible
length. Since cos3a = 4cos3a — 3cosa, replacing with
T = cos «, it can be written as

4z® — 3z — cos 3a = 0,

which is solvable, hence we can trisect an arbitrary angle.
[«=] Now, suppose we can trisect an angle and find the
cube root, then both equations
{ 2 —k=0 (2.1)
4z® — 3z — cos3a =0 (2.2)
is solvable.

Case 1: For linear and quadratic equation, we can trivially
solve them by ruler and compass only.

Case 2: For a general cubic equation z2 + az? + bz + ¢ = 0,
by a suitable change of variable (x =y — %), we always give
a principal cubic equation y® + py + ¢ = 0.

When p = 0, by equation (2.1), we can solve it.

When p # 0, from Cardano Formulas, the solutions of
y3 4+ py + g = 0 are,

A+ B, A¢ + BE®, A + B¢, where £ = ¢2/°™ and
A= f/—l/zq + v/ (1/29)% + (1/3p)?,
B = /-1/2¢ — v/(1/29)? + (1/3p)?
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Since (1/2¢)%+(1/3p)3 is constructible, if (1/2¢)%+(1/3p)® >
0, A3 and B3 are also constructible. Hence, also by equation
(2.1), A and B are constructible, and thus y® + py +¢ =0
can be solved.

Now suppose (1/29)% + (1/3p)® < 0, iff p® < 27/4¢% < 0,
then p < 0 and

'—I/Qq\/—27/p3! <1,
hence, there exists o such that

cos 3o = —1/2¢\/—27/p8.
By a suitable substitution y = 21/1/3p , we have
4% — 3t ~ cos3a = 0.

Then, by equation (2.2), 4 + py + ¢ = 0 is solvable. There-
fore, all cubic equations can be solved.

Case 3: Consider a general quartic equation z4+ax3+ bz +
cr+d=0.

By substituting £ = y — a/4, we obtain the depressed
quartic

Vo +qy+r=0. (2.3)

If ¢ = 0, we solve the quartic by solving the quadratic
equation in y2.
If ¢ # 0, we rewrite (2.3) as

vt = —py* —qy—r. (2.4)

By adding 2zy* + 22 to both sides of (2.4), we have

W +2)° = (22 —p)y® — qu+ (22 — 1)
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Since z is arbitrary depending on our choice, we wish to find
z such that

(22 —p)y? —qy+ (> — 1) = (gu + h)? (2.5)

for some constants g, k. Then, we solve (2.3) by y? + 22 =
+(gy + h) and solve two resulting quadratic equations.

But this situation occurs iff (22 —p)y? —qy+ (22 —7) =0
has a double root, and thus iff

? —4(2z —p)(22 -r)=0. (2.6)
Rewrite (2.6) as
82% —dpz? — 8rz+4pr —q* =0 (2.7)

which is a cubic equation in z.

Now, from case 2, we can solve (2.7), and then by case
1, we can solve (2.5). Hence (2.3) is solvable.

Therefore, we can solve all equations with degree at most
four. |

Theorem 2.11 A point (x,y) has a solid construction if
and only if x + yi € C lies in a sub-field K of C such that
there exists K;,1=0,1,...,n, which satisfies

Q=KogcKiCKyC---CK,=K

and the index [K; : K;_1] =2 or 3 for j =1,2,...,n.

3 Construction with Marked Ruler and
Compass
After classifying different types of construction and their

relative field of extension, we should now analyze the con-
structions made by marked ruler and compass, and thus to



