TESTING
TIME-VARYING
VOLATILITY MODELS
IN
FINANCIAL
TIME SERIES
ANALYSIS

by Shi Xiuhong
£ R FF 5 Hrep
HERDERELR

NHLU/ %

| e
L ERBH S KR
Capital University of Economics and Business Press



. BEREZEEARNHEDESENH

TESTING
TIME-VARYING
VOLATILITY MODELS
IN
FINANCIAL
TIME SERIES

ANALYSIS

by Shi Xiuhong
£ RUETFF 5 Hreh
B RHREER

L A

S m——
- L
T e

Vg e
Capital University of Economics and Business Press

&




EBERSE (CIP) B

SR T EIEEIIERMNIE  Testing Time-Varying
Volatility Models in Financial Time Series Analysis; 3% 3/ & 41
ZE. b B RMETT R 5 K¥E R ,2009. 6

ISBN 978 -7 —5638 - 1677 -4

[.£&- L.%- . &EFINFHE—SHESER—NH—&
Bi—arir—3E3C V. F83

A B 51 CIP $UB 7 (2009 ) 5% 076263 5

Testing Time-VaryingVolatility Models in Financial Time Series Analysis

SR FS PSRRI PEE

BHFL F

HRERAT LN A RS

o oH dEETTEIERXLE (R4 100026)

B iF  (010)65976483 65065761 65071505( {6 K)
M Hit  http://www. sjmcb. com

E - mail publish@ cueb. edu. cn

% W 2EFEHE

R H EHSHFHRKFEDR SRR S
BB B JLERYERARREAR

F x 1/32

F M 12FF

Ep % 4.375

M & 200946 A% 1 iSH 1 REDRI

1 S ISBN 978 -7 -5638 — 1677 -4/F - 969

£ # 18.00%

BEPFEARREE, XL A RAR
MEEA SRR



BB RS T EMBE AESMARNEET A2 —, %
BTEFALFAY T ERE, BRSNS L
EFEEZEN, ENREMNRR T ENRABATNERZ
T . RETER, HERRTR AR RBERA RGN
EHSE. #EBNE, i FENILEXTEEBE A SUREE
ETR/FERREAFELRRNEE, HEEATEXSERR
HIMERE , TR REH R R R IER

g% BT /sl diablin 1548 | 7R 508 T h g B
HREFRE R, AT B N8, &30 E
BERELFMTF:

%8, N A4 vl % ;

525, ZE RTINS L T % EGARCH R
BIHLHS BH H T B0R 10 5 Wy ey U5 LA SRS T, I E
ZREBSGITRMRBEET;

S =%,7E Jump-GARCH BRI B E Al |, RINVE B KA SR
S BRI B RER B S8 , 355 AT B E , B
KGR IERRYE;

SEVOEE, 7 Jump-GARCH () #55 f 2Rl I, 3R UK 10 BRER 3L
KA B RBGH &, 3R EAL B SIE7 i AR ;

SBHE, 53 FI7E Jump-EGARCH A F] Jump-EGARCH (t) #
RIREERE I, RIS BKER B R R B B BB RS 1T, 38
LB ARSI HT A0 EABSHIE 5




SN, 7E Jump-SV BRI B AE b, SR UUS B BEER R K hr
B H RSB GH&, HE TR RAISKUE 3 B A
Bt BHREEER.



1 Financial Volatility Models -+« coececemnnviiinns Ceerreenreenes 1
' 1.1 Stylized Facts ........ s 1
1.1.1 ARCH-type Model «+++- e everaa—————— )
1.1.2 Stochastic Volatility (SV) Model eerereenaean, 5
1.1.3  Jump Process eeeeesseressarmesineinninninniiiiienns 7
" 1.2 The Relationships of the Three Models  «+++ssvvvvenee 9
1.2.1 ARCH-type and SV Models eiemeesiiresenesnens 10
1.2.2 ARCH-type and SV Models with Jump
" 'Compéhiedls 1 AL L e L
1.2.3  Purpose for Testitig -++:-+es-sbeeeisiiandliliinnnins
1.2.4 Purpose of This Book :

1.3  Meéthodology” LT RO U T TR OO Breeee 14
1.3.1 .'-:L;g‘fanggmmﬁﬁﬁéf gt wieeesrrrerrareananans veeee 14
1.3.2 "'Dirac’s Delta Function ™ «++--+ SEISTEDIPPRPRRRRY 15

1.4 Structure of This Book +eeeesvereivacrammreaseoreneenns 15
References «+-ce+-srsseeascinense .......... 16

2 Testing for EGARCH against Stochastic’

Volatility Models -------- Teitesensieeseditaasiaeibeceinncennes 25
9.1 Introduction =»-<e=-- Veererenebeirbeiiisiansasaces [ 25
2.2 Model and Test Statistic ««+¢++eesv++ hiskinesiassierarnes 26
2.3  Conclusions «eessrssvnsrecrericeiborsibiiaiornintaniniees 40

1



:‘,'f}'estlng Time-Varying Volatlliity Mcdels in Financial Time Series Anolysis \ .

APPENIX  +eeererrrrrersiiiitte et 40
REfETENCESs - +«+evstssetarsmnsasneeressseseneasmnsessnmeenses 44
3 Testing for GARCH against Jump-GARCH
1 01 1 T P 46
3.1 IntrodUCHORN ++ v sreetesrrssrrrseserssermarnevarassersenees 46
3.2 Model and the Lagrange Multiplier Test
SEALISHE  ovreererrrerrsessrosreerusnenversrasrosnsnenenies 48
3.3 Simulation -tecceeessersrertenteeeneinioreteniniineiininas 56
3.4 CoONClUSIONS +++++etssreeeretersretserernersesenenssensonnes 59
Appendix A cossesseeerereriiin 60
Appendix B ceeesrrereieieiiinn 65
AppENdix € «osvsvrrrrersriineesiniiiineei s 68
REfErences  ««te+rreretsersruraoeseismirmrsmssnersensiennenes 73
4 Testing for Jumps in the GARCH(t) Jump
PrOCESSES  «++vorecereresestrstoeuorsersornersessersnensnsrenens 75
4.1 TOtroQUCHOM « o rvsrrererrresessssseronranmensearssnssrnens 75
4.2 Model and Lagrange Multiplier Test Statistic «+-+--+ 77
4.3 A Monte Carlo Experiment and an Empirical
Example +seeeeeeresnnnesennininttienniiaes 85
4.4 Algebraic Details -+esvevreersssnnnerianniiineein 87
REfEIEnces  ++reerererssrrerreesrnarneseruasnaenruesansansnns 90
5 Testing for Jumps in the EGARCH Process  -----::-- 93
5.1 INErodUCHON «++«+sreerrreenornernersrenereeserresssansennas 93

5.2 Lagrange Multiplier Test for Jump-EGARCH with
Gaussian [NNOVALONS ++++-«trrerernerassssrsennnraainsans 95
5.3 Jump-EGARCH with Student-t Innovations -+« 101
2



i A1

5.4 One-sided Test ««+erreereecsieeaserroreacerenceneences 104
5.5 A Monte Carlo Experiment and an Empirical
Example +++eereresiitemiininmiiniiiiisiiennn. 105
RefErences ««e«s-eveeeererssisianreiresrentensessessenenneenns 111
6 Tests for Jumps in Stochastic Volatility
PIOCESSES *:++vrerrorersisarseirrenreanneersacncesnsscneesansnses 114
6.1 Introduction «++seececsrerecmmenrereesenenssenencennnens 114
6.2 Testing for Simple SV against SV with Jumps
ID REMUNS *+ererererorevertnierireienennireensareernnnenns 116
6.2.1 SV Molde with Jumps in Returns «--+«++sseesen 116
6.2.2  Test StatiStic cereterecserrerrorrvrsrarerorarernnnns 117
6.3 Testing for Jumps in the Volatility Correlated with
Jumps in Returns «++-vereeerverriminiinnnrnneenneennenn. 120
6.3.1 Model P [2]
6.3.2  Test SEALISHCE +++orererecrrcrrarescsrasnreronnnenes 122
6.4 Testing for Jumps in Volatility Independent of Jumps
iN REtUINS orrererreerrinnieriininriieniiererssserarannans 125
6.4.1 The Model »+rerrvereteremnnenennesnensoreenreranans 126
6.4.2 Test StAtISHC +ccvrrerrrereerenncensnns P 127
6.5 Empirical Examples and Monte Carlo Experiment --- 128
Appendix ++eeceeertnreietiieniiiiii i 128
References «r-evveecrerenrnmirenrerireciinienenssnresecnsnnns 130
JE A e oeererrtncccnncninsiucisessirreeranresvennesrnnnsssonnssnssssnsnnnnn 132
3



Financial Volatility Models

1.1 Stylized Facts

Financial time series data has several “stylized facts”. The first
is volatility clustering. As Mandebrot ( 1963 ) wrote, “... large
changes tend to be followed by large changes,of either sign,and small
changes tend to be followed by small changes ... ”. This volatility
clustering is evident when returns are plotted through time. The
second is fat tails of the distribution. Asset returns tend to be
leptokurtic as documented by Mandelbort (1963) ,Fama (1965) ,and
others. They modeled stock returns as identically and independently
distributed series sampled from fat-tailed distributions. The third is
leverage effects, which refers to the tendency for changes in the first
moment to be negatively correlated with changes in the second
moment. The forth is the presence of non-trading periods. Information
that accumulates while financial markets are closed is reflected in
prices after the market reopens. The fifth is the presence of forecast
for events. Forecast releases of information are associated with high ex
ante volatility. The sixth is the effect of macroeconomic variables and
volatility.

Volatility is the central concept in understanding these features.

.1



‘,Testing Time-Varying Volatility Models In Financial Time Series Analysis\‘g&

The study for volatility should be a main issue in financial time series
analysis , since volatility is an important element in the asset pricing
model of Sharpe (1964) and the option’s pricing model of Black and
Scholes (1973). However, until recently,the focus of most statistical
analysis of financial time series has been centered on the conditional
first moment, with any temporal dependencies in the higher order
moments treated as a nuisances. The increased importance of risk and
uncertainty considered in modern finance theory, however, has
necessitated the development of new econometric time series
techniques that allow for the modeling of time-varying variances and
covariances, i. e. time-varying volatility.

There are two types of the time varying volatility models. The
first one is the class of Autoregressive Conditional Heteroskedasticity
model ( hereafter ARCH-type model ), which contains the ARCH
model introduced by Engle (1982) and its variants. The second is
stochastic volatility (SV) model. However,jump process is so popular
in statistical analysis of financial time series recently that it should be
considered as the third approach of the volatility model, even though it
is not a branch in the view of specification of volatility model. The
following three subsections would give detailed evaluation of
theoretical developments on the three approaches respectively from the
econometrics point of the view.

1.1.1 ARCH-type Model

The ARCH-type model is the most widely used model of the three
approaches. It offers a key insight in the distinction between the
conditional and unconditional second-order moments. The unconditional
covariance matrix for the variables of interest may be time invariant,

the conditional variances and covariance often depend non-trivially on

.2,



il Financial Volatility Models

the past states.

Understanding this temporal dependence exactly is crucially
important not only for many issues in finance theory, such as option
pricing, the term structure of interest rates, general dynamic assert
pricing; but also for statistical analysis. In particular, a time series
{#,} can be represented as

x, = J/hu, (1-1)
where u, ~N (0,1) ,and
h,=Var (x,142,_,) (1-2)
suggests that the conditional variance for variable x,,as well as £, ,
denotes the information set at time ¢t — 1. The precise parameterization
of this conditional variance function is an important issue of
econometric specification, just as the specification of the mean.

Numerous specifications for the time varying conditional variance
have been proposed in the literatures. In the ARCH (p) model
proposed by Engle (1982), the conditional variance is defined as a

linear function of the past p squared innovations,

h, =a0+2°‘ix3-i (1-3)

p
where oy = 0,;, 20,1 = 1,2,'--p,and2 o; < 1.
=

For a ARCH(p) model, the value of p is large in practice, and
then the ARCH (p) model was generalized to GARCH (p,q) model
by Bollerslev (1986). In particular;

? q
h, = ap + Za,‘-xf_,- + Zazjh‘_j (1 -4)
= =
P

q
where ay>0;a,;, =0,Vi e [1,pl;0y =0,Vje [l,q];z 2

i=1 j=

(ay; + aZj) <1
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Apparently, the GARCH model can be rewritten as an infinite
order ARCH model and often provides a highly parsimonious lag
shape. Empirically GARCH(1,1) has been very successful with in
this vast class. Furthermore,these applications typically revealed that
there is a long-term persistence in the effect of shocks at time ¢ onto
the conditional volatility.

In spite of the apparent success of these simple parameterizations,
there are some features of the data in which these models are unable to
capture. The most interesting of these is the “leverage effect”,
emphasized by Nelson (1990) based on an argument by Black
(1976). Statistically, this effect says that negative surprises to asset
markets increase predictable volatility more than positive surprises.
Thus the conditional variance function ought not to be constrained to
be symmetric in past information. Nelson (1990 ) proposed the
exponential GARCH or EGARCH model:

X

P 9
In Ch) =op + Za,ix + Zazjln Ch, )+
=

i=1 /}:
S (| 2= -2 (| 2=])]

Applying logarithm , parameters oy , a;; , and ay;are free from the

(1-5)

non-negative constraints. Furthermore,B;, Vi e [1,p]would typically
be negative reflecting that positive shocks generate less volatility with
all else being equal. Because of asymmetry, EGARCH model can
express this feature, whereas ARCH and GARCH models cannot
express.

More generally,the GARCH models allow for h, to be an arbitrary
function of past conditional variances and past residuals; thus the
number of variants is vast, though the number of formulations of the

4.



(Il Fincncial Volatility Models

ARCH-type model considered here is limited because we are
interested in expressing the stylized facts regarding asset volatility
given above.

Specifying the volatility of current returns as a non-stochastic
function of past observations,the ARCH-type model can be estimated
by the Maximum likelihood ( ML) procedure. A recent survey of the
ARCH family can be found in Bollerslev et al. (1994).

1.1.2 Stochastic Volatility (SV) Model

In a Stochastic Volatility (SV) model, the logarithm of volatility
is specified as a linear stochastic process similar to an ARMA process.
SV model containing nonlinear state-dependent volatility appeared in
early financial researches, such as Tauchen and Piits (1983 ), and
Taylor (1982 ), and Hull, and White (1987 ), and so on. The

canonical model in this class for evenly spaced data is:

%= Jhe, (1-6)

In (h,)=pln (h,_,)+n, (1-7)
n,~N(0,0%) (1-8)
Co'”("lns.')=0,f0fvtllndi (1_9)

where |81 <1 is set to ensure the stationary of k,. In most cases, the

volatility process begins with the initial condition

h,~N(0,1—if'ﬁz—) (1-10)

assuming stationary.

The evaluation of thé likelihood of the SV model is much more
difficult than that of the ARCH-type model, and hence they have had
less empirical applications than the latter. Research on SV model
mainly has been performed in the area of parameter estimation and

several estimation methods alternative to the conventional maximum
. 5.
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likelihood method are now available, Ghysels et al. (1996), and
Shephard (1996) provide good reviews of the literature.

A simple approach to the estimation of SV models is based on the
moments, which includes the methods of the simple moment matching
(MM) (Taylor,1986) , the generalized method of moments ( GMM )
(Melino and Turnbull,1990; Anderson and Sorensen,1996) ,and the
simulated method of moments (SMM) ( Duffie and Singleton, 1993 ;
Gourieroux et al. ,1993).

Another simple approach is the quasi-maximum likelihood
(QML) estimation developed by Nelson (1988), Harvey et al.
(1993), Ruiz (1994), and Shephard (1994). They employ Kalman
filtering to estimate the unobservable log-volatility ,and use the Gaussian
quasi-likelihood to perform parameter estimation. Unfortunately, the
Gaussian QML approach of Harvey, Ruiz, and Shephard (1994 ), which

 initially seemed appealing because of its simplicity,fell by the wayside as

it become apparent that stochastic volatility models are highly non-
Gaussian. The problem is that standard volatility proxies such as log
absolute or squared returns are contaminated by highly non-Gaussian
measurement error ( Anderson and Sorensen, 1997 ), which produces
highly inefficient inference about latent volatility. This quasi-likelihood
estimator is poorly approximately by the normal distribution. It means
that the quasi-likelihood maximum estimator based on the normal
approximation has poor finite sample properties, for not depending on
the exact likelihood ,even though the usual quasi-likelihood asymptotic
theory is correct.

Better alternatives based on the exact likelihood are simulation-
based maximum likelihood (SML) ( Danielsson and Richard, 1993 ;
Danielsson, 1994a ) , and Bayesian approaches, which relies on the

.6



Il F-inancial Volatility Models

Markov chain Monte Carlo (MCMC) method , namely the Metropolis-
Hastings and Gibbs sampling algorithms, to sample from the joint

posterior distribution. These methods have found a number of
applications in the recent statistical literature. Early work on these
methods appears in Mertropolis, Rosenbluth, and Te/ller (1953),
Hastings (1970) ,Ripley (1977) and Geman (1984 ) while the more
recent developments spurred by Gelfand and Smith (1990 ) are
summarized in Gilks, Richardson, and Spiegelhalter (1996 ), and
Tanner (1996,Ch. 6),and Chen et al. (2000). The econometrics
work on this topic is reviewed in Chib and Greenberg (1996). A
tutorial introduction to the Mertropolis-Hastings algorithm including its
derivation from the logic of reversibility, is given by Chib and
Greenberg (1995).

1.1.3 Jump Process

The jump process proposed by Press ( 1967) ,and introduced into

financial econometrics by Merton ( 1976 ) have been proven to be a
useful tool in financial time series analysis, even when volatility models
are taken into account. The jump processes are widely used in
empirical analysis such as pricing models, event studies, and so on.
The general parametric jump process, as a mixture of both

continuous diffusion path and discontinuous jump path, can be

written as:
x,=ﬁz73,+z, (1-11)
J;
z, = Zyi (1_12)
i=1

where x, is return at time ¢,and h, denotes the instantaneous volatility

of the asset’s return conditional on that the Poisson jump event not

occur. According to the specification of A, , Jump-ARCH, and Jump-
W7
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SV process can be modeled ,as follows:

J,: the arrival number of jumps at time ¢, assumed to follow a
Poisson distribution with intensity) ;

A: the intensity parameter of the Poisson distribution, defined as
the expected number of events of per interval;

y,: the size offered by the ith jump at time ¢,Y; =0,

y, ~i.i.d.N(8,0°), (1-13)
Cov (9,,5,) =0,je[1,],1,Cov (&,,5,) =0 (1-14)

Assuming of strong Markov process ensures that the equation
mentioned above has unique solution in probability.

The jump models are designed to capture “surprise effects” e.g. ,
large changes attributable to the arrival of unexpected information
(Merton, 1990). But the estimation for the parameters representing
the jump arrival intensity and the distribution of the jump size is
particularly cumbersome when data is sampled at discrete time
interval. It is empirically difficult to discriminate the variances caused
by the continuous part, e. g. volatility model, from the variances
caused by the discontinuous part,i. e. jumps.

Thanks to the advance of computation and econometric methods,
the following methods can be used in the estimation of the model with
jumps: the maximum likelihood estimation ( QML see Fehr and
Rosenfeld, 1979; Ball and Torous, 1983; Ball and Torous, 1985;
Jorion,1988; S ¢rensen, 1991; Eraker et al. ,2001; Beine et al. ,
2003 ; Maheu et al. ,2004).

Another is the method of moments ( MM ), including cumulants
matching ( CM, see Press, 1967; Beckers, 1981; Ball and Torous,
1983) , the generalized method of moments (GMM) , efficient method
of moment (EMM, see Anderson et al. ,2002;) ,simulated method of

.8-
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moment (SMM,see Duffie et al. ,1998; Chernov et al. ,1999; Craine
et al. ,2000; Anderson et al. 2002), and indirect inference method
(IIM, see Gouri e'roux et al., 1993; Gallant and Tauchen, 1996,
Jiang, 2000 ). Markov Chain Monte Carlo ( MCMC, see Eraker et
al. ,2003). ' '

Based on the assumption of Markov process, ML is a convenient
method, because the calculation of the likelihood function from
discretely sampled data is simplified. For large samples, ML is one of
the best estimation methods, because estimators are consistent ,
asymptotically normal and asymptotically efficient. However, ML
requires a complete specification of the transition density, which for
nonlinear models may not have an explicit expression.

The estimators offered by MM are consistent, but inefficient. In
particular, estimators offered by CM, may be functions of the sample
moments ,may be inexistent, or have the wrong sign. The estimators
obtained by GMM, EMM, and SMM are based on arbitrarily chosen
moments of a jump model, originate from the difficulty in
distinguishing between whether movements are part of the jump path
dynamics. These drawbacks have limited the usefulness of these

methods in empirical work.

1.2 The Relationships of the Three Models

The ARCH-type models are easy to estimate because the exact
likelihood function can be explicitly defined. Thus, there are a large
number of variants of the ARCH models, since introduced by Engle
(1982). It is suspected that the development of ARCH-type models is
very near to the saturation point. The study on the SV and jump

process are now mainly on parameter estimation ,so that the number of
‘9.



