S ENHEEINEZEMET

Data Structures Using C

2 IE 5

(CIEE)

R Krishnamoorthy .
G Indirani Kumaravel

- ATERF Hibtt

RFUWHENBFESNEL BN RF (PR

Data Structures Using C

R 5

(CiEER)

R Krishnamoorthy

G Indirani Kumaravel

R Krishnamoorthy, G Indirani Kumaravel
Data Structures Using C
EISBN: 0-07-066919-8

Copyright © 2009 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part of this
publication may be reproduced or distributed by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co. and
Tsinghua University Press. This edition is authorized for sale only to the educational and training
institutions, and within the territory of the People’s Republic of China (excluding Hong Kong, Macao
SAR and Taiwan). Unauthorized export of this edition is a violation of the Copyright Act. Violation of
this Law is subject to Civil and Criminal Penalties.

A ST EVR 37 KA HH R R0 56 [32 4 55 -7 R SO H AR) 28 71 & 1 H AR B AR A A R
EFENRICEBE A (RERE EEE. W TRERATBIX R B & 1)3 808 S I LK
2. RV 2O, MAERFEERE, ¥2EE HE%.

ARE B BT IVFAT, 3 DT 7 3 BRI RA B I35 «

TR EERAFELS B 01-2009-4081 =
AEHEME McGraw-Hill 2 BB RS, TIHREEREHE.
MARERE, RILER. RINEERBIE: 010-62782989 13701121933
EH &Y% B (CIp) #3E

HHi 454 = Data Strctures Using C: C ¥ R: 3E3C/ (EI) 52 W7 5547 (Krishnamoorthy, R.),
CE) PEFGANYE/R (Kumaravel, G. 1) 3. —RENA. —Ibst: AL AR, 2009.9

(R SIHLEE BN E 2 M R 5D
ISBN 978-7-302-20731-3

I. Heee 1. O3 @FF- 1 ORHFEEH —mS %K — 8 — %X @CiES —FFERT
—EEER —EM —P V. TP311.12 TP312

o [RRAS P 5 CIP B A% (2009) 28 144169 &
RITEDE: B

HRREIT: TR AR b || S (¥ KN =27 GNP
http:/ /www.tup.com.cn BB 4R: 100084
B #l: 010-62770175 BB M. 010-62786544

B 5IE&ERS: 010-62776969, c-service@tup. tsinghua. edu. cn

R & K 1% 01062772015, zhiliang@tup. tsinghua. edu. cn

JEs TR R ED

= TR

AEFERE

148 X210 EP3k: 19.375

2009 4E 9 3 1 R ED K. 2009 4E 9 A% 1 RETRI
1~3000

39.00 JG

Jo=

RS H R T
20T P Ok ik ik

AAFMAFAELFAE WED. BRIT. BT, BT ENSs R H 8, 5 50 2 B 1
MR R . BEARHIE: 010-62770177 #3103 =42 034111-01

iR B W

HEA 21 g, HRAEEPZT. R RS E) 585K
Flo SEFMPOLRERNANA WS EFRAERKERRTOAL, HERGE
FEFES PR . BEHE, EAEFRERRAA KT, DRZEE
JEEM. HATHRE S EE B TR, A T InREM K E AR,
HUE I EAE R et 3 BRSO

WHAHERKF AL 1996 3740, SEAES HRA R &1, FEHIH
BT “RFHENAEAD GLERD” F—RF5EES, ZEEAR
FIWOUA L. BN 21 thad, ATAHE A IR E & S8 H B s
MIE, fECA MR L, by REEN A, SEEHTARSY, —
N BEAE Hh i A 5 B KPR E T3 A AA R R A T LB
AN B R 2 B, AURAE R SENLBR [503 2 Bb R 5 G
EIAR) 7, DASRIELE o SR UIHAM 3 B A A A R B Bk IR R L
BATA]. EAEEN LR, BB AR HSMT B NNT
Bbt, DARIBATHE “ KE¥EENEE HAFELEM RS GEERBO” Me5
BhF, HEE A AR .

R H R

ABOUT THE AUTHORS

R Krishnamoorthy, PhD is Professor of Information Technology, Bharathidasan
Institute of Technology, Bharathidasan University, Trichy. Dr R Krishnamoorthy
received his M. Tech Degree in Computer Science and Engineering from Indian
Institute of Technology, Kanpur and PhD degree in Computer Science and Engineer-
ing from Indian Institute of Technology, Kharagpur, with specialization in Computer
Vision and Image Processing. He has 24 years of teaching experience. He is the
author of three books, and forty-four technical papers published in National and
International Conferences and International Journals. He has produced five PhDs. He
is member of CSI, ISTE, IEEE and ACM. His areas of interest include network secu-
rity, image processing and software testing.

G Indirani Kumaravel is Senior Lecturer in Computer Science and Engineering,
Annamalai University, Chidambaram. She received her M E degree in Computer
Science and Engineering from Annamalai University. Indirani has 12 years of teach-
ing experience. She is a member of CSIL. Her areas of interest include Speech and
Image Processing.

PREFACE

C programming language offers several facilities to group data together in conve-
nient packages, or data structures. With the emergence of C as the most popular
language of implementation, it has been used in this book to extensively examine
data structures.

This Book is Meant for...

Keeping in mind the level of beginners, the book is written without any prerequisites.
It is an ideal textbook for students of various courses in Computer Science at the
diploma, polytechnic, undergraduate and postgraduate levels, and also for new
programmers who wish to know about the usage of different data structures in their
project.

Student Friendly Approach...

Students will gain a good appreciation of the subject as this book has a clear display
of syntax and abundant programming examples. To simplify concepts, the data struc-
tures are implemented using C language, in a step-by-step manner.

Organisation of the Chapters...

Having understood the difficulties faced by beginners, an introductory material with
fundamentals of data structure and an introduction to C language is presented in
Chapter 1. Chapter 2 deals with strings, their representation and operation. Chapter
3 is devoted entirely to stack data structure as the same has many applications in dif-
ferent fields of Computer Science and Engineering. Various stack operations, imple-
mentation issues, and applications of stack data structure are clearly explained in this
chapter. The queue data structure and its types such as circular queue, deque and
priority queue are described in Chapter 4 along with their operations, implementa-
tions and applications. Chapter 5 offers a clear understanding of linked list data
structure. Chapter 6 details the concepts of tree data structure. It starts with basic
terminology and describes tree representation, operations, types and applications
with illustrative programs. Graph data structure with its use, representation, imple-
mentation and applications are introduced in Chapter 7. Chapter 8 is completely
devoted to sorting techniques as it has many applications in various areas of Com-
puter Science and Engineering. Different searching techniques and search trees are
emphasised in Chapters 9 and 10 respectively. Recent advances in search trees,
Binary Search Trees, AVL, B, B+ and Trie Structures are also included in Chapter 10.
File structure along with various access strategies are presented in Chapter 11.

xii

The Key Pedagogical Features are...

In essence, this book is totally self-contained and provides good number of illustra-
tions and tested programs that demonstrate the concepts.

« Every chapter begins with an introduction that elucidates key topics and
provides basic background.

» Solved examples, tables, figures and flow diagrams interspersed throughout
the book are a valuable reference that simplifies the understanding of con-
structing modular and reusable structures.

e Programming code featuring precise instructions helps the reader implement
practical data structures, thereby enhancing program reliability.

o Review Yourself, Multiple Choice Questions and Programming Exercises are
included at the end of every chapter to reinforce the understanding of
concepts.

e Applications of each data structure are explained through concepts and
programming examples.

o Web supplements are a valuable resource for students and instructors. The
online learning centre contains Additional Problems, Sample Tests, Web
Links and Reference Titles for the students, and Solution Manual and chapter-
wise PowerPoint Slides for the instructors.

This Book is Outstanding Because...

DATA STRUCTURES USING C is unique, in the sense that it deals with both theo-
retical and programming aspects of different data structures. The novelty of this book
is that it not only covers all the concepts of data structures but also explains the imple-
mentation issues with tested programs in all the chapters.

Acknowledgements...

The authors wish to acknowledge the services rendered by their students in testing
the sample programs. Sincere thanks are also due to the colleagues who have
provided constructive criticism and feedback on the concepts presented in this book.
The authors are grateful to Mr. S. Raja Vel (M/S Vel Raj Computer Centre) for his
valuable assistance. The authors extend their appreciation to the editorial and pub-
lishing team of McGraw-Hill Education for their support in bringing out this book.
The in-depth feedback of the following reviewers has been invaluable.

Gursharan Dept. of Physics & Computer Science _
Dayalbagh Educational Institute, Agra

D. M. Dalgade Rajiv Gandhi Institute of Technology
RGIT Campus, Mumbai

Bindu Aggarwal Dept. of Computer Engineering
Sikkim Manipal Institute of Technology, Sikkim

Amitava Nag Dept. of Information Technology
Academy of Technology, West Bengal

S. Sridhar Dept. of Computer Science and Engineering
College of Engineering, Anna University, Chennai
Suggestions for improvement are welcome.
AUTHORS

CONTENTS

Preface Xi

1. Data Structures—An Overview 1
1.1 Introduction /
1.2 Data Types 3
1.3 Program Modules 4
1.4 Control Structures 7
1.5 Looping Structures /3
1.6 Arrays 16
1.7 Structures 24
1.8 Pointers 28
1.9 Recursion 3/
Review Yourself 35
Multiple Choice Questions 36
Programming Exercises 38

2. Strings and Character Manipulation 39
2.1 Introduction 39
2.2 Primitive Functions or Operations on Strings 39
2.3 Representation of Strings 41
2.4 String Manipulation inC 42
2.5 String Manipulation Applications 58
Review Yourself 66
Multiple Choice Questions 67
Programming Exercises 67

3. Stacks 68
3.1 Introduction 68
3.2 Definition 68
3.3 Primitive Operations 69
3.4 An abstract Data Type (ADT) 70
3.5 Implementation 70

viii

3.6 Applications of Stack 76
Review Yourself 99

Multiple Choice Questions 99
Programming Exercises 101

. Queues

4.1 Introduction 102

4.2 Definition 102

4.3 Operations on a Queue /03
4.4 ADT for Queues 104

4.5 Representation of Queue /04
4.6 Various Other Queue Structures
4.7 Applications 152

Review Yourself 165

Multiple Choice Questions 165
Programming Exercises 165

. Linked Lists

5.1 Introduction 168

5.2 Definition 168

5.3 ADT for Linked List 169
5.4 Singly Linked List 169
5.5 Doubly Linked List /84
5.6 Circular Linked Lists /98
5.7 Sparse Matrices 210

5.8 Applications 232

5.9 Additional Programs 254
Review Yourself 272
Multiple Choice Questions 272
Programming Exercises 273

. Trees

6.1 Introduction 274

6.2 Definition 274

6.3 Terminologies Used 274
6.4 Binary Tree 276

6.5 Threaded Binary Trees 296
6.6 Heap Trees 317

6.7 Deaps 327

6.8 Huffman Algorithm 337

112

Contents

102

168

274

6.9 Decision Trees 344

6.10 Game Tree 3517

6.11 Applications 358

Review Yourself 362

Multiple Choice Questions 362
Programming Exercises 363

7. Graphs 364
7.1 Introduction 364
7.2 Definition 365
7.3 Terminologies Used 366
7.4 Representation of Graphs 369
7.5 ADT for Graphs 372

7.6 Extra Information that can be Retrieved from the Adjacency
Matrix of the Graph 373

7.7 Operations on Graphs 374

7.8 Applications 410

7.9 Unweighted Shortest Path for Graphs Using Adjacency Matrix 439
7.10 Introduction to NP-completeness 444

Review Yourself 445

Multiple Choice Questions 445

Programming Exercises 446

8. Sorting 447
8.1 Introduction 447
8.2 Definition 448
8.3 Internal Sorting 448
8.4 External Sorting 474
Review Yourself 483
Multiple Choice Questions 483
Programming Exercises 484

9. Searching 485
9.1 Introduction 485
9.2 Quantity Dependent Search Techniques 485
9.3 Density Dependent Search Techniques 490
9.4 Tndexed Search Techniques 509
Review Yourself 512
Multiple Choice Questions 5 12
Programming Exercises 51 3

10.

11.

Search Trees 514
10.1 Introduction 574

10.2 Binary Search Tree (BST) 5174

10.3 AVL Trees 530

104 B - Trees 544

10.5 B+ - Trees 562

10.6 Tries 572

Review Yourself 587

Multiple Choice Questions 587

Programming Exercises 588

File Structures 589
11.1 Files 589

Review Yourself 599

Multiple Choice Questions 600

Programming Exercises 600

Index 602

DATA STRUCTURES—
AN OVERVIEW

1.1 INTRODUCTION

Computer A computer is an electronic machine that accepts data and instructions
(called programs), manipulates the data using the program and gives the information
as result.

Data Data is a value or a set of values which does not give any meaning. It is
generally a raw fact.

(Examples) i) 34 i) C iii) 11/2/2000 iv) RAMA

Entity Anentityisa ‘thing’ or ‘object’ in the real world that is distinguishable from
all other objects. The entity has a set of properties or attributes and the values of some
sets of these attributes may uniquely identify an entity. An entity set is a collection of
entities.

Emlty o Student
Atiributes Roll No. Name DOB % of marks scored
Values 123 RAJA 11/12/1980 78%

All the students of a particular class constitute an entity set.

Domain Each attribute of an entity set has a range of values and is called the
domain of the attribute. In other words, a domain is the set of all possible values that
could be assigned to a particular attribute. For example, for the attribute percentage-
of-marks scored the domain is {0 to 100}.

Information Information can be defined as meaningful data or processed data.
When the raw facts are subjected to processing, we get arelevant piece of information
as its result. Information also relates an entity and the values of the attributes of that
entity.
Data (11/12/1980) becomes information if the entity RAJA is related to
the Date of Birth attribute (11/12/1980) as follows:

Date of Birth of the student RAJA is 11/12/1980.

Fig. 1.1 shows the interrelation between data and information.

Data Structure A data structure is an arrangement of data in a computer’s
memory (or sometimes on a disk). Depending upon the arrangement of data, data
structures can be classified as arrays, records, linked lists, stacks, trees, etc., We also
require to have algorithms to manipulate the data in these structures.

Information 1
Information 2

Procedures to

Data process data

Information n

Fig. 1.1 Relation between data and information

A general understanding of the data structures is important in developing efficient
algorithms in all phases of advanced data processing and computer science. A few of
the applications of various data structures can be as follows:

1. Compiler design
Operating systems
Database management systems
Statistical analysis packages
Numerical analysis
Graphics
Artificial Intelligence
Simulation
Network analysis

That is, in many applications, different data structures are used to do the operations
on the data structures. In such a situation, there is a tradeoff between memory utiliza-
tion and run time. That is, one data structure sacrifies memory compactness for speed;
another utilizes memory efficiently but results in a slow run time. So each data struc-
ture has its own strengths and weaknesses. They will be discussed fully as we study
each data structure. Table 1.1 shows the characteristics of various data structures.

© XN AW

Algorithms for Data Structures Once a data structure for a particular
application is chosen, an algorithm must be developed that manipulates the related
data items stored in it. Such an algorithm should have the following features.

1. It should be free of ambiguity.

2. It should be efficient.

3. It should be concise and complex.

Classification of Data Structures In computer science, several data structures
are available and are used depending on the area of applications. But a few data
structures are used frequently almost in all application areas and they may be used to
construct a complex data structure. These data structures are known as fundamental
data structures or classic data structures. Fig. 1.2 shows the classification of
fundamental data structures.

In a linear data structure, all the elements are arranged in a sequence (or)
maintained in a linear ordering. In non-linear data structures, no such sequence is
maintained for the elements and the elements are distributed over a plane Fig. 1.3
shows the diagrammatic representation of various data structures.

Classic Data Structures

- l
Linear Dax:i Structures Non-Linear Data Structures
s ! i v ! ' v

Arrays Stacks Queues Linked lists Trees Graphs Tables Sets

Fig.1.2 Classification of data structures

1.2 DATATYPES

A data type is a term which refers to the kind of data. Every programming language
has its own set of built-in data types. In C, the following are the basic data types.

int, long, char and void
Declaring Variables The syntax used to declare the variables is as follows

<data type> variable(s)
where variables are separated by a comma.

int a,b,c
char d,e
float g,h

4 ; - Data StmcturesUsm

1 T l Front (deletion) Rear (insertion)
2 «— Top l l
3 (insertion

and eeina Fmn i
4 deletion)
5
- Queue

Array Stack
—
Linked list

(a) Linear data structures

@ |
@ Q |
0000 L 1]

Tree Graph Table

(b) Non-linear data structures

Fig.1.3 Diagramatic representation of various data structures

Type Modifiers Except type void, all basic data types have different modifiers
preceding them. A modifier is used to alter the meaning of the basic type to
appropriately suit the requirements of various situations. Now let us discuss the
different basic data types and their modifiers.

Integer These are numbers without fractional parts that may optionally be prefixed
with a minus sign. The type modifiers that may be used with this type are
long, short, unsigned long, unsigned short
Float These are numbers with decimal or fractional parts. The type modifiers that
may be used with this type are
float, double, long double
Character Any single letter enclosed within single quotes is called a character data

type. Table 1.2 shows in general the number of bytes allocated in a computer’s
memory for each data type.

1.3 PROGRAM MODULES

A program module is nothing but a set of statements used to achieve a particular task.
It may be the main program itself or procedures and functions. In C, the program

module may be the main function or any other function. The syntax of any program
module is as follows. -

<Return data type> function name (Declaration of parameter 1,
parameter 2, ..., parameter n)

Declaration of local variables;
<function body>
return <value>

A program module may return any value to the invoking function or calling func-
tion by means of the return statement. Sometimes a program module may be used to
achieve a particular task. In that case, the invoked program module (function) need
not return any value to the calling or invoking function. A program module can pass
arguments to another program module either by reference or by value. If the argu-
ments are passed by value then any change that takes place for the arguments in the
called function will not get reflected in the calling function. Some sample C programs
are given below to illustrate these concepts.

[*calling functions with arguments and return values*/

main ()
{
int i, &
int fact (int);
printf (“Enter a number (only positive number) :”) ;

o

scanf (*% 4”7, & i) ;

if (1 ==0)
printf (“Factorial of % d is 17, 35
else

{f = fact (i) ;
printf (“Factorial of % d is % 4, i, £) 3
}

int fact (int n)

int: i; £
for (i =
f=£X1;

return (f);

Sample Input and Output
Enter a number (only positive number) : 5
Factorial of 5 is 120

/*calling functions with arguments but no return values*/

void main ()
{
int &, b, e ;
printf ("Enter 3 numbers a, b, c :") ;
scanf ("%d %d %d", & a, &b, &c);
big (a, b, ¢) :

big (int x, int y, int z)

if ((x > y) && (x > z))
printf (“\n a is the biggest”) ;
else if ((y > z) && (y > x))
printf (™\n b is the biggest”) ;
else
printf (“\n c is the biggest”)

}

Sample Input and Output
Enter 3 numbers a, b, c: 510 15
c is the biggest

ple3) /*calling function by value */

int a, b;
printf (“Enter values for a and b:/n”);
scanf (“%d %d”, &a, &b);
fun (a, b);
printf (“The values of a and b after executing the function are
%d %d\n”, a, b);
}
fun (int d, int e)
{
d = d*5;
e = e*7;
printf (“The value of a and b inside the function is %d %d\n”, d, e);
}

Sample Input and Output -
Enter values foraand b: 2 3
The value of a and b inside the function is: 10 21
The values of a and b after executing the function are: 2 3

If the arguments are passed to a function by reference then any change that takes
place for the arguments in the called function will get reflected in the calling function.
The following program illustrates this idea.

