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Preface

This book is intended as textbook for the bilingual-course on theory and applications of differ-
ential equations. It is an outgrowth of course given by us in the last several years to students majo-
ring in mathematics at Hunan City University.

We believe that the knowledge and appreciation of the basic theory of differential equations
are important for scientists and engineers as well as mathematicians. Accordingly we have tried to
present this theory in a careful and straightforward manner. The meaning of a solution of a differen-
tial equation and methods to find information about the solutions are discussed more thoroughly
than is customary in an elementary text. Considerable emphasis is given to techniques of solution.
Many important points of view are well motivated and explained. We have included much more ma-
terial than is usual for a book on this level. This has been done to allow greater flexibility in the use
of the book for students of varying backgrounds and interests. Furthermore , the value of this book as

a reference for students in later work and for practicing scientists and engineers is enhanced.

The book is divided into six chapters.

Chapter 1 covers models, definitions, classifications ,and simple illustrations of solutions of dif-
ferential equations.

Chapter 2 is connected with first-order differential equations. We give some special methods of
solving first-order explicit form then deal with existence and uniqueness of solutions and methods of
approximating solutions. Some viewpoints treat with the general solution and the singular integral of
first-order implicit form are introduced at the final of the chapter.

In Chapter 3 ,we study high-order equations. Some important methods to solve linear equations
are developed. These methods include undetermined coefficients, variation of parameters, Laplace
transform , power series, and so on. The last section is devoted to linear boundary-value problem and
reducible high-order equations.

Many methods of finding solutions of first-order ordinary differential system are summarized in
Chapter 4. Matrix expression is an excellent way of finding solutions of first-order linear system
with constant coefficients. Finding the first integrals can solve some particular systems.

Chapter 5 emphasizes to predict behavior of solutions without attempting to find them. Some
important methods of obtaining information about the solutions are introduced. The last two sections
are devoted to study two-dimensional autonomous systems.

Chapter 6 introduces partial differential equations. We focus on solving first- and second-order

linear forms.



In addition,some exercises are provided at the end of each chapter and answers or hints to
most of these problems are collected at the end of the book.
The book is designed to serve as a textbook for 64 hours.

”

Some chapters or sections marked “ * ” should be selected when teaching time is more than

64 hours.

It is pleasure to express our gratitude to many friends and colleagues and to generations of

students at Hunan City University for their valuable criticism of a preliminary version of this book.

By Song Yingging,Cao Fuhua and Huang Xin
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CHAPTER 1

INTRODUCTION TO DIFFERENTIAL EQUATIONS

In mathematical analysis, we have studied many functions which can reflect the
relations between quantities and quantities on moves of materials. However, a few
facts show that many relations can not directly be expressed in such a function form.
They are usually expressed as the equations which relate independent variable(s) ,
unknown function(s) and the derivatives. Such an equation is called differen-
tial equation (DE).

Essentially, a differential equation implies a relation between variables, which
is not clear as that of a function. Therefore, it is necessary to study further the rela-
tion after building up a mathematical model of differential equation. However, this is
not a simple work. Sometimes, a clear relation, say a solution of the equation, can
be obtained; sometimes we can only do some qualitative analysis.

In our textbook, we will mainly study the basic theory and methods of solution

of differential equations.

1.1 MODELS ON DIFFERENTIAL EQUATIONS

The importance of differential equations is attested to by the frequency with
which they occur in scientific phenomena; in fact, many of the fundamental laws of

science are formulated in terms of differential equations.

time rate of change of the temperature of a coolmg body o Pfopomonal‘-‘ .

| ":*el‘lce between the body and its surroundmgs Therefore the dlﬁ'erennal::‘ ,

equatmn for the temperature of the coohng body is
e k( T T)

_ where T, is the temperature of surroundings and k is a positive constant.
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Example 1.2 Dilution problems

A tank initially contains V gal of fresh water. Att =0 a brine solution, containing c 1b of salt per '

gallon, is poured into the tank at a rate of a gal/min. The contents of the tank are stirred to me_imtam_- .
homogeneity, and the dilute solution is pumped out at a rate of a gal/min. The problem is to find the
amount of salt in the tank at any time. . 1

Let x (in pounds) be the amount of salt in the tank at any time . The volume of the solutlon .

in the tank is always V; therefore the concentration of salt is x/V (in pounds per gallon) Salt'b

IeaVeS the tank at the rate Of ax/V lb/mln and Salt enters the tank at ca 1b/mm The rate Of e

change of the amount of salt in the tank is therefore

x5 L Example 1.3 Eluctncal circuits

The c1rcu1t shown in Figl. 1 contains a xemstance R an_
inductance L,a capacitance C and a soumef’_bi,;voltage E (t) .
@ E(D) [] R According to Kirchhoff’ s law: the sum of the volt-;' .

C
|
I

zero, the charge Q(t) satisfies the dliferenual equahon~

: L——Q+R—Qf——0 E(t)

Fig1.1 A Simple Electrical Circuit d?

Example 1.4" Population growth _
. Some interesting mathematical problems arise in biology. One example is the problem of pre-
dicting the growth of population. This is, of course, an extremely difficult problem whlch dépendsv
on many complicated parameters. . .
Let N(t) be the number of people in an isolated populanon at time ¢. The functlon N(t) is
clearly an integer-valued function; it is constant in intervals of time when the populatlon does not
change, and it is discontinuous when a birth or death changes the population. Such discrete-val-
ued functions are difficult to analyze. Our first simplifying approximation is to replace N(t) by a
continuous and differentiable function. This allows us to use the powerful tools of calculus. The
function N(¢) can be thought of as a smoothed-out version of the actual population. . _
Our next simplifying assumption is that the time rate of change of N(t) is a function only of ’

N, that is .

dN
dr

The function F(N) is called the growth function.

= F(N)

We shall further assume that
HO) =0

age drops around a simple closed series. cu'cmt equals? -
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, F(C) =0 :
where C >0. Assumption F (0) =0 implies that if no people are mmally present, then no people: '.
will ever be present Assumptlon F(C) =0 can be thought of as an upper lumt to the populatxon .

- which could occur, for example, because of a hmlted food supply. :

The 31mplest dxfferenttal equatlon for populatton growth is

& wvce-m
where k >0 stands for a grov‘ving'populatlonr ,
~ This can be rewritten as. _
o = kCN - K
&

. The ﬁrst term on the nght—hand sxde can be cons1dered the blrth rate and the second term:"_ .
L death rate ‘ : ' ' ‘ :

Example 1.5 . Multiple-specles growth ‘ . .
In 1924, an Itahan bxologlst D. Ancona (Volterra s future son—m—law) mtroduced Volterra to

"‘problems in e0010gy that in the years. after the First World War the proportlon of predatory ﬁshes_ ’

. caught in the Upper Adrlatlc was found to be consuierably hlgher than in the years before the war,

/ whereas the proportlon of prey ﬁshes was down Of course, the war between Austrm and Italy ‘
~ made ﬁshery in the Adrxatxc 1mposs:ble but why dld this give much benefxt to predatory ﬁshes -
. than to their prey‘? v -' ' ' G e
Volterra denoted by x the densuy of the prey ftshes also by y that of predators and proposed - L

dliferentlal equatwns for growth of predators and prey He assumed that the growth rate of preyis

a positive constant a if there exists no predator. Further, it is assumed that the rate decreases hne— .
arly as a functlon of the predator density. Thxs leads to the prey equatton .

‘ ‘ _;Elcft_’ .. by, a,b >0 ' ‘ | ‘

For the predatory fishes, it is assumed that the predators will de'eay to ztero exponentially'in . "». |

the absence of the prey and the growth rate is enhanced with the densxty £ Thls leads to the pred- - o

ator equation :

-l—gziz—‘c+dx, c,d>0.
y dt : v
Rewritten these two equations, we have a system of differential equations:
(2 (1) = x(a - by) ab >0 -
{y.'(t) = y(-c +dx) ¢.d >0

Example 1.6° A two-degree-of-freedom vibration

Consider a mechanical system consisting of two masses connected by three springs as shown in
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~ —
i i

, ‘ Fig 1. 3 The Vlbratmg Strmg - . .
X the smng is gwen a small vemcal dxsplacement and released it will v1brate up and down A
'pomt P on the strmg, ata distance x from the left end of the string, will vibrate vertically. That 18,
its vertlcai *1splacement y will vary w1th the time ¢. Thus, in general , the dlsplacement y - will de- -
~ pend on both the position x and the time ¢. That is, y will be a funcnon of x and ¢ which we shallv
de51g;1ate by y(x,t ). We shall-usually assume that y(x,t) has continuous second partial derivatives.
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In order to derive the differential equation for y(x,¢), we shall make a few simplifying as-
~ sumptions. We assume that the only force that is exerted on the string is the constant tension T lb.
That is, we neglect the effects of gravity, friction, etc. We assume that the mass per unit length §
is constant along the string (6 =m/L). Finally, we assume that the displacement y(bzx t) is small
in such a way that the angle of inclination « of the displacement curve is always small. .
Consider a typical element of length As, of the string between x and x + Ax, the vemcal com-
ponent of the force on the element is v
' F = Tsina, - Tsina,
Since we have assumed « to be small, sina= tana we have approximately
/ . F = T(iana, - tana,)
or, by the definition of the partial derivative y,
' F = T[y!(x + Ax 1) - y!(x,1)]
The mass of the element is § + As, where As is the length. Our assumptions ensure that As~
Ax, and hence the mass is approxlmately 6 + Ax. Applying Newton’s law, we have__v _

Tly/(x + Ax,t) - y/(%,6)] = (8- Ax)y)(a,t) | .
where we assume that the element is small enough so that the vertical acceleration at all pomts of "-
the element is approximately )/'(x ). .

Dmdmg the equation by § - Ax, we have _
a[y a t Ax;i v (%, t)] Syle D)

If we now take the limit as Ax—0, the expression in brackets becomes ¥,

Writing down a’ = T/5, we can derive the differential equation for the displacémgnt of a vi-

brating string:

ody(x,t) 1. 3%(s,0)
ox’ a’ at*

Example 1.8° Heat conduction

Whenever there is a difference in temperature between two parts of a solid object there will
be a flow of heat from the hotter part to the cooler. This fact is essentially the content of the second
law of thermodynamics. Implied in the statement is the fact that the temperature u ( degrees centi-
grade ) is a function of both position and time. Hence the variations of u will be governed by a par-
tial differential equation.

We shall examine first the simple special case in which the heat conductor is a cylinder paral-
lel to the x axis. If the lateral surface of the cylinder is insulated, and if the ends are perpendicu-
lar to the x axis and are kept at constant temperature, then the temperature is a function of x and
tonly, i.e. u=u(x,t). We also assume that there is no source of heat inside the cylinder. The

differential equation governing the changes in u can be derived from the following two laws of phys-




d. / ‘:.“Flg 1 4)

6 CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

. des, whlch we assume to be Lnown !
@ The heat content Qofa sohd of n mass m and specific heat ¢ is
Q= cmu
‘ 1f the entire body is at temperature u. -
(2 The rate at whlch heat flows out of a body through a plane surface of area A 1s glven by '

du
on

~ where K is the thermal conductmty ( Assumed to be a positive constant) and du/on is the outward

vnormal derivative. ‘ :
These two laws wﬂl be applied to the thin shce of the cylinder between 1 and %+ Ax( See

Flg 1.4 Heat conductlon between x and %+ Ax .
If the mass de.1s1ty of the sohd isp, then the mass Am of the shce is Am pA_Ak, Wher_eA is
~ the (constant) cross- sectlonal area. .
» Equatlon Q cmu, 1mphes that the heat content of the slice is
- A() = cpA(Ax)u(x t)
'where we assume that the temperature at all points in the slice is approximately u(x t).
_‘ At the right-hand boundary of the slice, i.e. , at x + Ax, the outer normal denvatwe is sim-
. 'ply the derivative with respect to x. Hence the rate of heat flow out through the face at x4+ Axis
'glven by - KAu/(x +Ax,t). o v ’ .
‘ ~ Similarly, at the left face, at x the outward normal derivative of u is - gu/ 6{&: and henee the

i “ rate of heat loss equals KAu! (x ‘),

Expressnons - KAu/! (x +Ax, t) and KAu/ (1: 1) represent the rate at which heat ﬂows out of ;
the element Hence if we change the slgns of hoth expressmns and add, ‘we obtain the rate of in-
, crease of heat in the slice. ' . .

’ KA[u!(x + Ax,t) - u"(x £) ]
~ From AQ = cpA( Ax)u(x, t) we can obtain another expression for the time rate Q, of cha.nge
. of heat content in the slice, i. e. ' "

' Q! = cpAu/ (x t)Ax
Comhlnmg the results of KA[u/(x + Ax,t) —u/(x,t) ] and Q, = cpAu/(x, t)Ax we have
cpAu(x,t) Ax = KA[u/(x + Ax;t) —u/(x;t) ]
- Dividing by cpAAx and taking the limit as Ax—0 yields
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wl(x.0) = o l(x,0)

 The positive constant K/cp = k is called the thermal diffusivity, and the above equation can be

_written in the standard form of

u'(x,t) = ’Ilc—ut'(x,t)

1.2 BASIC CONCEPTS OF DIFFERENTIAL EQUATIONS

1.2.1 Classifications of Differential Equations

Definition 1 An equation which relates derivative (s) of unknown function
(s) is called a differential equation.

The differential equations can be classified in terms of number of independent
variables, numbe. of dependent variable (s), the order of the highest derivative,

and the linearity of equations.

Classification 1  Classifying according to number of independent variables

According to number of independent variables, the differential equations can be
classified to ordinary ones and partial ones.

Definition 2 If a differential equation depends on only one independent varia-
ble, then the derivatives of unknown function (s) are ordinary derivatives, and the
equation is called an ordinary differential equation (ODE).

If the equation depends on two or more independent variables, then the deriva-
tives of unknown function (s) are partial derivatives, and the equation is called a
partial differential equation (PDE).

For example, the equations in example 1.1, example 1.2, example 1.3, ex-
ample 1.4, example 1.5, and example 1.6 are ordinary differential equations, and
the equations in example 1.7 and example 1.8 are partial differential equations(See

section 1.1).

Classification 2 Classifying according to number of dependent variables

According to number of dependent variables (unknown functions) , the equa-
tions can be classified to differential equations and differential systems.

Definition 3 Number of dependent variables (unknown functions) appearing

in a differential equation is called dimension of the equation.
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For example, the equations in example 1.1, example 1.2, example 1.3, ex-
ample 1.4, example 1.7 and example 1. 8 are one-dimensional equations, and the
equations in example 1.5 and example 1.6 are two-dimensional equations( See sec-
tion 1.1).

Generally, in a problem, if there are n unknown functions, then we shall obtain

n differential equations. These equations make up of a differential system.

Classification 3 Classifying according to the Order

The differential equations are also classified according to their order.

Definition 4 The order of a differential equation means the order of the highest
derivative appearing in the equation.

According to the order of a differential equation, the equations have two types:
first-order ones and high-order ones.

For example, the equations in example 1. 1 and example 1. 2 are first-order
ones; the equations in example 1.3 and example 1.4 are second-order ones. The e-
quation in example 1.5 is a first-order differential system. The equation in example
1.6 is a second-order differential system. The equations in example 1.7 and example
1.8 are second order partial differential equations(See section 1.1).

An ordinary differential equation of the nth-order can be described as an equa-
tion in the form:

flx,y.y',y™) =0
where f is a well-defined function of its various arguments.
Similar expressions could be written for an n-dimensional system and a partial

differential equation of the nth-order.

Classification 4 Classifying according to the linearity

According to the linearity, the differential equations can be classified to linear
ones and nonlinear ones.

Definition 5 If unknown function and its derivatives appear linearly, the
equation is called a linear differential equation. Otherwise it is nonlinear.

For example, the equations in example 1.1, example 1.2, example 1.3, ex-
ample 1.6, example 1.7, and example 1. 8 are linear ones; the equations in exam-
ple 1.4 and example 1.5 are nonlinear ones( See section 1.1).

An nth-order linear ordinary differential equation can be described as an equa-
tion in the form

a,(2)y" +a,_ (2)y"" + o +a,(2)y +a,(x)y = fx)
In particular, if f(x) =0, the equation is called a homogeneous linear ones;

(n)



