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UNIT 1
TEXT

RANDOM PROCESSES

To determine the probabilities of the various possible outcomes of an
experiment, it is necessary to repeat the experiment many times. Suppose then
that we are interested in establishing the statistics associated with the tossing of
a die. We might proceed in either of two ways. On one hand, we might use a
single die and toss it repeatedly. Alternatively, we might toss simultaneously a
very large number of dice. Intuitively, we would expect that both methods would
give the same results. Thus, we would expect that a single die would yield a
particular outcome, on the average, of 1 time out of 6. Similarly, with many
dice we would expect that 1/6 of the dice tossed would yield a particular
outcome'' .

Analogously, let us consider a random process such as a noise waveform
n(¢t). To determine the statistics of the noise, we might make repeated
measurements of the noise voltage output of a single noise source, or we might,
at least conceptually, make simultaneous measurements of the output of a very
large collection of statistically identical noise sources. Such a collection of
sources is called an ensemble, and the individual noise waveforms are called
sample functions. A statistical average may be determined from measurements
made at some fixed time t=t¢, on all the sample functions of the ensemble. Thus
to determine, say, n’ () , we would, at t=t¢,, measure the voltages n(#;) of
each noise source, square and add the voltages, and divide by the (large)
number of sources in the ensemble. The average so determined is the ensemble
average of n(¢,) .

Now = (¢,) is a random variable and will have associated with it a
probability density function. The ensemble averages will be identical with the
statistical averages and may be represented by the same symbols. Thus the
statistical or ensemble average of n?(#,) may be written E[n*(#,) ]= n?(z,) .
The averages determined by measurements on a single sample function at
successive times will yield a time average, which we represent as (»n’(2)).

In general, ensemble averages and time averages are not the same.
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Suppose, for example, that the statistical characteristics of the sample functions
in the ensemble were changing with time. Such a variation could not be reflected
in measurements made at a fixed time, and the ensemble averages would be
different at different times. When the statistical characteristics of the sample
functions do not change with time, the random process is described as being
stationary. However, even the property of being stationary does not ensure that
ensemble and time averages are the same. For it may happen that while each
sample function is stationary the individual sample functions may differ
statistically from one another. In this case, the time average will depend on the
particular sample function which is used to form the average. When the nature of
a random process is such that ensemble and time averages are identical, the
process is referred to as ergodic. An ergodic process is stationary, but, of
course, a stationary process is not necessarily ergodic.

Throughout this text we shall assume that the random processes with which
we shall have occasion to deal are ergodic?). Hence the ensemble average
E{n(t)} is the same as the time average (n(t)), the ensemble average
E{n*(2)} is the same as the time average (n”(#)) , etc.

Autocorrelation

A random process n (¢), being neither periodic nor of finite energy has an
autocorrelation function

1 T/2
R(o) = lim -J n(nlt+ o de Aa.1m

—T/2
In connection with deterministic waveforms we were able to give a
physical significance to the concept of a power spectral density G(f) and to
show that G(f) and R(z) constitute a Fourier transform pair. As an extension of
that result we shall define the power spectral density of a random process in the
same way. Thus for a random process we take G(f) to be

oo
G(f) =J R(pe™dr 1.2)

It is of interest to inquire whether G ( f) defined in Eq. (1.2) for a random
process has a physical significance which corresponds to the physical
significance of G(f) for deterministic waveforms.

For this purpose consider a deterministic waveform v(z) which extends from
— oo to+oo. Let us select a section of this waveform which extends from — T/2 to
T/2. This waveform v;(¢) = wv(2) in this range, and otherwise vr(¢) = 0 . The
waveform vy (¢) has a Fourier transform V1 (f). We recall that [V (f)|?is the
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energy spectral density; that is, |V (f)|?df is the normalized energy in the
spectral range df. Hence, over the interval T the normalized power density is
|V (f)|?/T . As T—>oo, vr(2)—>v(2),and we then have the result that the
physical significance of the power spectral density G (f), at least for a
deterministic waveform, is that

GOF) = lim 2 | Vo CHT |2 (1.3)
T—-DOT

Correspondingly, we state, without proof, that when G (f) is defined for a
random process, as in Eq. (1.2), as the transform of R(z), then G(f)has the
significance that

GeFFcAithE lTlNT<f>1Z (1.4)
T—oo

where E { } represents the ensemble average or expectation and Ny ( f)
represents the Fourier transform of a truncated section of a sample function of the
random process n(z) .

The autocorrelation function R(z) is, as indicated in Eq. (1.1), a time
average of the product n(¢) and n(¢t+<7). Since we have assumed an ergodic
process, we are at liberty to perform the averaging over any sample function of
the ensemble, since every sample function will yield the same result. However,
again because the noise process is ergodic, we may replace the time average
by an ensemble average and write, instead of Eq. (1.1),

R()=E{n(t)n(t+7)} (1.5)
The averaging indicated in Eq. (1.5) has the following significance: At some
fixed time ¢, n (¢t) is a random variable, the possible values for which are the
values n (¢) assumed at time ¢ by the individual sample functions of the
ensemble. Similarly, at the fixed time ¢t+z, n(z+<7) is also a random variable.
It then appears that R (r)as expressed in Eq. (1.5) is the covariance between
these two random variables.

Suppose then that we should find that for some z, R () = 0. Then the
random variables n (¢) and n (¢+7) are uncorrelated, and for the gaussian
process of interest to us, n (z) and n (t+7) are independent. Hence, if we
should select some sample function, a knowledge of the value of n(z) at time ¢
would be of no assistance in improving our ability to predict the value attained by
that same sample function at time ¢+ .

The physical fact about the noise, which is of principal concern in connection
with communications systems, is that such noise has a power spectral density
G (f) which is uniform over all frequencies. Such noise is referred to as “white”



che e BESATRRREIGEBITH)

noise in analogy with the consideration that white light is a combination of all
colors, that is, colors of all frequenciest®’ . Actually there is an upper-frequency
limit beyond which the spectral density falls off sharply. However, this upper-
frequency limit is so high that we may ignore it for our purposes.

Now, since the autocorrelation R(¢) and the power spectral density G(f) are a
Fourier transform pair, they have the properties of such pairs. Thus when G(f)
extends over a wide frequency range, R(z) is restricted to a narrow range of z. In the
limit, if G(f) =1 (a constant) for all frequencies from — o< f< + oo, then R(7)
becomes R (z) = Is(z), where §(¢) is the delta function with §(z) =0 except for
=0. Since, then, for white noise, R(z) =0 except for r=0, Eq. (1.5) says that n
(¢) and n(z~+7) are uncorrelated and hence independent, no matter how small z.

Power Spectral Density of a Sequence of Random Pulses

We shall occasionally need to have information about the power spectral density
of a sequence of random pulses. The pulses are of the same form but have
random amplitudes and statistically independent random times of occurrence® .
The waveform (the random process) is stationary so that the statistical features
of the waveforms are time invariant. Correspondingly, there is an invariant
average time of separation T, between pulses. We further assume that there is
no overlap between pulses.

If the Fourier transform of a single sample pulse P, () is P,(f) then
Parseval's theorem states that the normalized energy of the pulse is

E = Ppprpar=] IPpltas (1.6)
The energy in the range df at a frequency f is
dE; = | P, (FY/| 2P C¥e7)

Now consider a sequence of n successive pulses. Since we assume that the

pulses do not overlap, the energy in the range df at the frequency f due to the n

pulses is:

dE = dE, +dE; + =+ +dE, = {| P, () |2+ | P (P |* + =+ | P. (S| }df
1.8

The average value | P(f) |?of the sequence of n pulses is, by definition
PO =2(IPH I+ PP+ PO (.9

so that dE in Eq. (1.8) can be written
dE = n'} PCF)|2df (1.10)
The average time of separation between pulses is T's s0 that » pulses will occur
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ina time nT,. The differential energy in the band df contained in the time
interval nT is, from Eq. (1. 10)

& = L TPOTar = L TPCHTar (1.1

The power spectral density in the frequency range df is G(f) =(dE/nT,)/df.
Hence, from Eq. ( 1.11),G(f)is:

T1|P<f>|2 (1.12)

G(fH=

Hence, whenever we make an observation or measurement of the pulse
waveform which extends over a duration long enough so that the average
observed pulse shape, such as their amplitudes, widths, and spacings are
representative of the waveform generally, we shall find that Eq. (1.12) applies.

In the special case in which the individual pulses are impulses of strength I,
then, since in this case P(f)=1, we shall have.
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