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PHYSICAL
UANTITIES AND
VECTORS

™ Accurale measurement is essen-
tial in medical applications of
physics. The laser beams shining
on this cancer patient form
across-hairs on the site of a

tumor, which is then bombarded
by a stream of high-energy neu-
trons coming from the square ap-
erture on the right. The neutrons
deposit their energy in the tumor,
stopping its growth and, ideally,
destroying it completely. Because
the narrow neutron beam is very
accurately targeted, little damage
occurs to the healthy tissue sur-
rounding the tumor.

? Subatomic particles
used in cancer therapy can be
aimed at a tumor with an ac-
curacy of 100 micrometers.
How many human biood cells
laid side by side would span
this distance?

hy study physics? For two reasons. First, physics is one of the

most fundamental of the sciences. Scientists of all disciplines make
use of the ideas of physics, from chemists who study the structure of mole-
cules to paleontologists who try to reconstruct how dinosaurs walked. The
principles of physics play an essential role in the scientific quest to under-
stand how human activities affect the atmosphere and oceans, and in the
search for alternative sources of energy. Physics is also the foundation of
all engineering and technology. No engineer could design any kind of
practical device without first understanding the basic principles involved.
No engineer could design a DVD player, a flat-screen TV, an interplane-
tary spacecraft, or even a better mousetrap without first understanding the
basic laws of physics.

But there’s another reason. The study of physics is an adventure.
You will find it challenging, sometimes frustrating, occasionally painful,
and often richly rewarding and satisfying. It will appeal to your sense of
beauty as well as to your rational intelligence. Our present understanding
of the physical world has been built on the foundations laid by scientific
giants such as Galileo, Newton, Maxwell, and Einstein, and their influ-
ence has extended far beyond science to affect profoundly the ways in
which we live and think . You can share some of the excitement of their
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discoveries when you learn to use physics to solve practical problems and to gain insight into every-
day phenomena. If you’ve ever wondered why the sky is blue, how radio waves can travel through
empty space, or how a satellite stays in orbit. you can find the answers by using fundamental phys-
ics. Above all, you will come to see physics as a towering achievement of the human intellect in its
quest to understand our world and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’ll need throughout
our study. We’ll discuss the nature of physical theory and the use of idealized models to represent
physical systems. We’ll introduce the systems of units used to describe physical quantities and dis-
cuss ways to describe the accuracy of a number. We’ll look at examples of problems for which we
can’t (or don’t want to ) find a precise answer, but for which rough estimates can be useful and in-
teresting . Finally, we’ll study several aspects of vectors and vector algebra. Vectors will be needed
throughout our study of physics to describe and analyze physical quantities, such as velocity and
force, that have direction as well as magnitude.

1.1 | The Nature of Physics

Physics is an experimental science. Physicists observe the phenomena of nature and try to find
patterns and principles that relate these phenomena. These patterns are called physical theories or,
. when they are very well established and of broad use, physical laws or principles.

The development of physical theories is always a two-way process that starts and ends with ob-
servations or experiments. This development often takes an indirect path, with blind alleys, wrong
guesses, and the discarding of unsuccessful theories in favor of more promising ones. Physics is not
simply a collection of facts and principles; it is also the process by which we arrive at general prin-
ciples that describe how the physical universe behaves.

No theory is ever regarded as the final or ultimate truth. The possibility always exists that new
observations will require that a theory be revised or discarded. It is in the nature of physical theory
that we can disprove a theory by finding behavior that is inconsistent with it, but we can never
prove that a theory is always correct.

Every physical theory has a range of validity outside of which it is not applicable. Often a new
development in physics extends a principle’s range of validity.

1.2 | Idealized Models

In physics a model is a simplified version of a physical system that would be too complicated to
analyze in full detail.

For example, suppose we want to analyze the motion of a baseball thrown through the air. How
complicated is this problem? The ball is neither perfectly spherical nor perfectly rigid; it has raised
seams, and it spins as it moves through the air. Wind and air resistance influence its motion, the
earth rotates beneath it, the ball’s weight varies a little as its distance from the center of the earth
changes, and so on. If we try to include all these things, the analysis gets hopelessly complicated.
Instead, we invent a simplified version of the problem. We neglect the size and shape of the ball by
representing it as a point object, or particle. We neglect air resistance by making the ball move in
a vacuum, we ignore the earth’s rotation, and we make the weight constant. Now we have a prob-
lem that is simple enough to deal with.

To make an idealized model of the system, we have to overlook quite a few minor effects to
concentrate on the most important features of the system. Of course, we have to be careful not to
neglect too much. When we use a model to predict how a system will behave, the validity of our
predictions is limited by the validity of the model. When we apply physical principles to complex
systems, we always use idealized models, and we have to be aware of the assumptions we are mak-
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ing. In fact, the principles of physics themselves are stated in terms of idealized models; we speak
about point masses, rigid bodies, ideal gases, and so on. Idealized models play a crucial role
throughout this book.

1.3 | Standards and Units

As we learned in Section 1.1, physics is an experimental science. Experiments require meas-
urements, and we generally use numbers to describe the results of measurements. Any number that
is used to describe a physical phenomenon quantitatively is called a physical quantity. For exam-
ple, two physical quantities that describe you are your weight and your height. Some physical quan-
tities are so fundamental that we can define them only by describing how to measure them. Such a
definition is called an operational definition. Some examples are measuring a distance by using a
ruler, and measuring a time interval by using a stopwatch. In other cases we define a physical
quantity by describing how to calculate it from other quantities that we can measure. Thus we might
define the average speed of a moving object as the distance traveled ( measured with a ruler) divid-
ed by the time of travel ( measured with a stopwatch) . S

When we measure a quantity, we always compare it with some reference standard. Such a
standard defines a unit of the quantity. The meter is a unit of distance, and the second is a unit of
time. When we use a number to describe a physical quantity, we must always specify the unit that
we are using; to describe a distance simply as “4.56”wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that do not change
and that can be duplicated by observers in various locations. The system of units used by scientists
and engineers around the world is commonly called “the metric system, ”but since 1960 it has been
known officially as the International System, or SI ( the abbreviation for its French name, System
International) . A list of all SI units is given in Appendix A, as are definitions of the most funda-
mental units.

The definitions of the basic units of the metric system have evolved North Pole
over the years. When the metric system was established in 1791 by the
French Academy of Sciences, the meter was defined as one ten-mil-
lionth of the distance from the North Pole to the equator (Fig.1.1). The
second was defined as the time required for a pendulum one meter long
to swing from one side to the other. These definitions were cumbersome
and hard to duplicate precisely, and by international agreement they
have been replaced with more refined definitions.

Tims . . . . . Fig.1.1 In 1791 the distance
From 1889 until 1967, the unit of time was defined as a certain from the North Pole to the

fraction of the mean solar day, the average time between successive ar- equator was defined to be ex-
rivals of the sun at its highest point in the sky. The present standard, actly 10'm. With the modem
adopted in 1967, is much more precise. It is based on an atomic clock, fieﬁ“itim‘ of meter this distance
which uses the energy difference between the two lowest energy states of 1507 abiout 0. 02% wmore then
the cesium atom. When bombarded by microwaves of precisely the m'

proper frequency, cesium atoms undergo a transition from one of these states to the other. One sec-
ond is defined as the time required for 9, 192, 631, 770 cycles of this microwave radiation.

Length

In 1960 an atomic standard for the meter was also established, using the wavelength of the or-
ange-red light emitted by atoms of krypton(**Kr) in a glow discharge tube. Using this length stand-
ard, the speed of light in a vacuum was measured to be 299,792, 458m/s. In November 1983, the
length standard was changed again so that the speed of light in a vacuum was defined to be precisely
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299,792,458m/s. The meter is defined to be consistent with this number and with the above defi-
nition of the second. Hence the new definition of the meter is the distance that light travels in a
vacuum in 1/299, 792,458 second. This provides a much more precise standard of length than the
one based on a wavelength of light.

Mass

The standard of mass, the kilogram, is defined to be the mass of a particular cylinder of plat-
inum-iridium alloy. That cylinder is kept at the International Bureau of Weights and Measures at
Sevres, near Paris. An atomic standard of mass would be more fundamental, but at present we can-
not measure masses on an atomic scale with as much accuracy as on a macroscopic scale. The gram
( which is not a fundamental unit) is 0.001 kilogram.

Unit Prefixes
Once we have defined the fundamental units, it is easy to introduce larger and smaller units for
the same physical quantities. In the metric system these other units are related to the fundamental

units (or, in the case of mass, to the gram) by multiples of 10 or % Thus one kilometer ( 1km) is

1000meters, and one centimeter { lem) is Lmeter. We usually express multiples of 10 or 11—0 in

100
ﬁ =107, and so on. With this notation, 1km = 10°m and

lem =10 *m. :
The names of the additional units are derived by adding a prefix to the name of the fundamen-
tal unit. For example, the prefix “kilo-, ”abbreviated k, always means a unit larger by a factor of

1000; thus

1kilometer = L km = 10’ meters = 10°m

exponentia: .aotation: 1000 = 10°,

lkilogram = lkg = 10’ grams = 10°g
Tkilowatt = 1kW =10’ watts = 10°W

Here are several examples of the use of multiples of 10 and their prefixes with the units of
length, mass, and time.

Length

Inanometer = Inm =10 °m (a few times the size of the largest atom)
Imicrometer = 1um = 10 "°m (size of some bacteria and living cells)
Imillimeter = 1mm =10 *m ( diameter of the point of a ballpoint pen)
Icentimeter = 1em = 10 “*m ( diameter of your little finger)

1kilometer = 1km = 10°m (a 10-minute walk)

Mass

I microgram =1 g =10 °g = 10 kg( mass of a very small dust particle)
I milligram = Img =10 *g = 10 "°kg (mass of a grain of salt)

lgram = 1g =10 kg (mass of a paper clip)

Time

Inanosecond = Ins =10 ~°s ( time for light to travel 0.3m)

Imicrosecond = 1 s = 10 “°s( time for an orbiting space shuttle to travel §mm)
I millisecond = Ims = 10 ~’s ( time for sound to travel 0.35m)

Unit Consistency
We use equations to express relationships among physical quantities, represented by algebraic
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symbols. Each algebraic symbol always denotes both a number and a unit. For example, d might
represent a distance of 10m, ¢ a time of 5s, and v a speed of 2m/s.

An equation must always be dimensionally consistent. You can’t add apples and automo-
biles; two terms may be added or equated only if they have the same units. For example, if a body
moving with constant speed v travels a distance d in a time ¢, these quantities are related by the e-
quation

d=u (1.1)

If d is measured in meters, then the product vt must also be expressed in meters. Using the a-

bove numbers as an example, we may write

10m=(2 %)(5@

Because the unit 1/s on the right side of the equation cancels the unit s. the product vt has
units of meters, as it must. In calculations, units are treated just like algebraic symbols with re-
spect to multiplication and division.

When a problem requires calculations using numbers w ith units, always write the num-
bers with the correct units and carry the units through the calculation as in the example above.
This provides a very useful check for calculations. If at some stage in a calculation you find that an
equation or an expression has inconsistent units, you know you have made an error somew here. In
this book we will always carry units through all calculations, and we strongly urge you to follow
this practice when you solve problems.

1.4 | Uncertainty and Significant Figures

Measurements always have uncertainties. If you measure the thickness of the cover of this book
using an ordinary ruler, your measurement is reliable only to the nearest millimeter, and your result
will 3mm. It would be wrong to state this result as 3.00mm; given the limitations of the measuring
device, you can’t tell whether the actual thickness is 3.00mm, 2.85mm, or 3.11mm. But if you
use a micrometer caliper, a device that measures distances reliably to the nearest 0.01mm, the re-
sult will be 2.91mm. The distinction between these two measurements is in their uncertainty. The
measurement using the micrometer caliper has a smaller uncertainty; it’s a more accurate measure-
ment. The uncertainty is also called the error, because it indicates the maximum difference there
is likely to be between the measured value and the true value. The uncertainty or error of a meas-
ured value depends on the measurement technique used.

We often indicate the accuracy of a measured value—that is, how close it is likely to be to
the true value—by writing the number, the symbol +, and a second number indicating the uncer-
tainty of the measurement. If the diameter of a steel rod is given as(56.47 +0.02) mm, this means
that the true value is unlikely to be less than 56.45mm or greater than 56.49mm. In a commonly
used shorthand notation, the number 1.6454(21) means 1.6454 +0.0021. The numbers in paren-
theses show the uncertainty in the final digits of the main number.

In many cases the uncertainty of a number is not stated explicitly. Instead, the uncertainty is
indicated by the number of meaningful digits, or significant figures, in the measured value. We
gave the thickness of the cover of this book as 2.91mm, which has three significant figures. By this
we mean that the first two digits are known to be correct, while the third digit is uncertain. The last
digit is in the hundredth place, so the uncertainty is about 0.01mm. Two values with the same
number of significant figures may have different uncertainties; a distance given as 137km also has
three significant figures, but the uncertainty is about 1km.

When we calculate with very large or very small numbers, we can show significant figures
much more easily by using scientific notation, sometimes called powers-of-10 notation. The dis-
tance from the earth to the moon is about 384,000, 000m, but writing the number in this form gives
no indication of the number of significant figures. Instead, we move the decimal point eight places
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to the left ( corresponding to dividing by 10*) and multiply by 10*. That is,
384,000, 000m =3.84 x 10°m

In this form, it is clear that we have three significant figures. The number 4.00 x 10~ also
has three significant figures, even though two of them are zeros. Note that in scientific notation the
usual practice is to express the quantity as a number between 1 and 10 multiplied by the appropriate
power of 10. Tablel.l summarizes the rules for significant figures.

Table1.1 Using Significant Figures

Mathematical operation Significant figures in result

Multiplication or division No more than in the number with the fewest significant figures
Example: (0.745 x2.2)/3.885 =0.42
Example: (1.32578 x10”) x (4.11 x107*) =5.45 x 10*

Determined by the number with the smallest uncertainty(i.e., the
Addition or subtraction fewest digits to the right of the decimal point)
Example:27.153 +138.2 -11.74 = 153.6

Note: In this book we will usually give numerical values with three significant figures.

When an integer or a fraction occurs in a general equation, we treat that number as having no
uncertainty at all. For example, in the equation »* —v2 =2a(x - x,), which is Eq.(2.9) in Chap-
ter 2, the coefficient 2 is exactly 2. We can consider this coefficient as having an infinite number of
significant figures (2.000000. ..). The same is true of the exponent 2 in »* and v].

1.5 | Vectors and Scalars

Some physical quantities, such as time, temperature, mass, density, and electric charge, can
be described completely by a single number with a unit. But many other important quantities have
a direction associated with them, such as velocity and force, and cannot be described by a single
number.

When a physical quantity is described by a single number, we call it a scalar quantity, In
contrast, a vector quantity has both a magnitude and a direction in space. Calculations with scalar
quantities use the operations of ordinary arithmetic. However, combining vectors requires a differ-

ent set of operations. We usually represent a vector quantity by a single letter, such as A. In this
book we always print vector symbols in boldface italic type with an arrow above them. The arrow
is a reminder that vectors have direction. If you don’t distinguish between scalar and vector quanti-
ties in your notation, you probably won’t make the distinction in your thinking either, and hopeless
confusion will result.

When drawing any vector, we always draw a line with an arrowhead at its tip. The length of
the line shows the vector’s magnitude, and the direction of the line shows the vector’s direction.

We usually represent the magnitude of a vector quantity by the same letter used for the vector,
but in light italic type with no arrow on top. An alternative notation is the vector symbol with verti-

cal bars on both sides: (magnitude of A) =A = |A]. We also note that a vector can never be equal
to a scalar because they are different kinds of quantities. Each term in a equation must belong to



