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Preface

Interest in multilevel statistical models for social science and public health studies has been
aroused dramatically since the mid-1980s. New multilevel modeling techniques are giving
researchers tools for analyzing data that have a hierarchical or clustered structure. Multilevel
models are now applied to a wide range of studies in sociology, population studies, education
studies, psycheology, economics, epidemiology, and public health.

Individuals and social contexts (e.g., communities, schools, organizations, or geographic
locations) to which individuals belong are conceptualized as a hierarchical system, in which
individuals are micro units and contexts are macro units. Research interest often centers on
whether and how individual outcome varies across contexts, and how the variation is explained
by contextual factors; what and how the relationships between the outcome measures and indi-
vidual characteristics vary across contexts, and how the relationships are influenced or moder-
ated by contextual factors. To address these questions, studies often employ data collected from
more than one level of observation units, i.e., observations are collected at both an individual
level (e.g., students) and one or more contextual levels (e.g., schools, cities). As a result, the
data are characterized by a hierarchical structure in which individuals are nested within units at
the higher levels. This kind of data is called hierarchically structured data or multilevel data.
The conventional single-level statistical methods, such as ordinary least square(OLS) regression
are inappropriate for analysis of multilevel data because observations are nonindependent and
the contextual effects cannot be addressed appropriately in such models. Multilevel modeling
not only takes into account observation dependence in the multilevel data, but also provides a
more meaningful conceptual framework by allowing assessment of both individual and contex-
tual effects, as well as cross-level interaction effects.

This book covers a broad range of topics about multilevel modeling. Our goal is to help stu-
dents and researchers who are interested in analysis of multilevel data to understand the basic
concepts, theoretical frameworks and application methods of multilevel modeling. This book is
written in non-mathematical terms, focusing on the methods and application of various multi-
level models, using the internationally widely used statistical software, the Statistics Analysis
System (SAS). Examples are drawn from analysis of real-world research data. We focus on two-
level models in this book because it is most frequently encountered situation in real research.
These models can be readily expanded to models with three or more levels when applicable. A
wide range of linear and non-linear multilevel models are introduced and demonstrated.

There are six chapters in this book.

Chapter 1 presents a brief introduction and overview of multilevel modeling. In this chapter,
we discuss the problems inherent in applying traditional analytical methods to hierarchically
structured or multilevel data; we explain why multilevel models are needed for analyzing such
data; and we discuss the conceptual framework, its advantages, and limitations of multilevel
modeling. Chapter 1 concludes with a brief overview of computer software for multilevel mod-
eling.
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Chapter 2 summarizes basic concepts of multilevel models, including intra-class correlation
(ICC), model formulation, statistical assumptions, model estimation, model fit and model com-
parison, explained micro and macro level variances, and strategies of model building. Expansion
of the 2-level model to 3-level models is also discussed.

Chapter 3 demonstrates linear multilevel models, also known as hierarchical linear models
(HLM) using cross-sectional data. This chapter presents detailed model building strategies and
illustrates model development and statistical testing procedures step by step.

Chapter 4 extends multilevel models to longitudinal data. The chapter covers both linear and
curvilinear growth models. Some complex modeling strategies such as orthogonal polynomial
modeling and piecewise modeling techniques are also presented.

Chapter 5 discusses advanced multilevel models for discrete outcome measures, such as
binary, ordinal, nominal and count outcomes. The chapter starts with introduction of the gener-
alized linear models.Then we present the model formulation for each type of discrete outcomes:
multilevel logistic regression for binary outcome, multilevel cumulative logistic regression for
ordinal outcomes, multilevel multinomial models for nominal outcome, and multilevel Poisson
model, as well as multilevel negative binomial model, for count data. Alternative SAS proce-
dures are used to analyze different types of discrete outcomes, and detailed count of model
specifications and interpretations of model results are presented.

Chapter 6 discusses some special issues that are often encountered in multilevel modeling,
including approaches for modeling count data with extra zeros, semi-continuous outcome meas-
ures, and multilevel data with a small number of groups (i.e., level-2 units). We demonstrate
multilevel or random effects zero-inflated Poisson (RE-ZIP) models, random effect zero-inflated
negative binomial models (RE-ZINB), mixed-effect mixed-distribution models, bootstrapping
multilevel models using SAS procedures. In addition, group-based models are introduced to
assess growth trajectories of various outcome measures using longitudinal data. A special SAS
procedure, SAS PROC TRAJ is used to demonstrate group-based logit models, group-based ZIP
models, group-based Poisson models, group-based censored normal models, and group-based
normal models. Finally, missing values and sample size/statistical power estimation for multi-
level modeling are discussed.

While many computer programs are available for multilevel modeling, we have chosen the
internationally distributed statistics package Statistics Analysis System (SAS) to demonstrate
multilevel models in this book. SAS is a suitable package for many analysts because of its pow-
erful data manipulation and modeling capabilities. The models demonstrated in this book are
intended to show readers, step by step, how to build multilevel models using SAS for both
cross-sectional and longitudinal data. SAS syntax for all of the models covered in the book are
provided in each corresponding chapter of the book. The data used, as well as SAS syntax for all
examples, can be downloaded from the website of the China Higher Education Press (aca-
demic.hep.com.cn). Although data used for these examples are drawn from public health stud-
ies, the methods and analytical techniques are applicable to other fields of social sciences.
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Chapter 1 Introduction

Over the past two decades multilevel models (Mason, Wong et. al. 1983; Bryk & Raudenbush,
1992; Raudenbush & Bryk, 2002; Goldstein, 1987, 1995) have gained popularity in various
research fields including education, psychology, sociology, economics, and public health. Multi-
level models extend ordinary least square (OLS) regression to analyze multiple level data or hi-
erarchical data that involve both micro and macro observation information. Multilevel models
also appear under different names in the literature, including hierarchical linear models (Bryk &
Raudenbush, 1992; Raudenbush & Bryk, 2002), random-effect models (Laird & Ware, 1982),
random coefficient models (DeLeeuw & Kreft, 1986), variance component models (Dempster,
Rubin, & Tsutakawa, 1981), mixed models (Longford, 1987), and empirical Bayes models
(Strenio, Weisberg, & Bryk, 1983).

Prior to the development of formal statistical methodology for multilevel models, sociolo-
gists engaged in contextual or multilevel analysis of hierarchically structured data. In the late
1950s and early 1960s Lazarsfeld (1961) and Merton (1957) at Columbia University began to
assess contextual effects on individual behavior. The 1970s witnessed a significant jump in
analysis of multilevel data in education (Barr & Dreeben, 1977; Block & Burns, 1976; Bronfen-
brenner, 1976; Burstein, 1980; Cronbach, 1976; Herriot & Muse, 1973; Pedhazur, 1975; Snow,
1976; Spady, 1973; Walberg, 1976). In a systematic study of contextual analysis, Boyd and
Iversen (1979) discussed how to model multilevel data with micro-macro models, i.e., to formu-
late within group regression model at individual level, then relate the within group regression
coefficients to contextual variables that describe the groups. Although multilevel observations
are discussed in their models, their estimation was conducted using ordinary least square (OLS)
techniques that were inappropriate for multilevel analysis.

Statistical theories of multilevel models and corresponding computer programs were devel-
oped in early 1980s by sociologists and demographers. Models were applied to analyze the large
scale multilevel data of the United Nation’s World Fertility Survey (WFS) (Hermalin and
Mason, 1980; Mason, Wong et al, 1983). Further methodological and substantive work in edu-
cational studies and the user-friendly windows-based computer programs by Bryk & Rauden-
bush (1992) and Goldstein (1987, 1995) have popularized the multilevel models. Multilevel
models are now applied in a wide range of studies in the social sciences.

1.1 Conceptual framework of multilevel modeling

A key concept in social sciences is that a society can be described in hierarchical structures. By
hierarchy, we mean that units at a lower level are nested within or grouped into units at a higher
level. People cannot be treated as isolated individuals but as social beings. Individuals are mem-
bers of many different types of groups and are embedded in different social contexts. For exam-
ple, individuals belong to families, neighborhoods, organizations and communities. Awareness
has been mounting that individual behaviors and outcomes are affected not only by individual
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characteristics, but also shaped by the social contexts in which they are imbedded (Lazarsfeld,
1961; Merton, 1957; Bronfenbrenner, 1976; Blalock, 1984; Iversen, 1991). Davis’ so-called
“frog-pond” theory proposes that individual students evaluate personal ability relative to
in-groups and pay little attention to out-groups (Davis, 1966). A moderately intelligent student
(a medjum size “frog”) in a highly intelligent school (a large “pond”) may become discouraged
and thus become an under-achiever, while the same student in a considerably less intelligent
school (a small “pond”) may gain confidence and become an over-achiever. On the contrary, a
moderately intelligent student might be motivated to study harder in a highly intelligent school
and become more successful. The effect of an individual student’s intelligence on his/her
achievement may be influenced by specific features in the school he/she attends. In addition to
composite measures (e.g., average intelligence level), student academic achievement may also
be influenced by a variety of school level variables such as student/teacher ratio, teachers’ work
experience, school facilities, budget, etc.

The relationships between academic achievement and individual level variables vary across
schools. For example, differences in academic achievement among ethnic groups may be larger
in some schools and smaller in others. In such cases the extent of the effect of ethnicity on aca-
demic achievement may relate to identifiable school-level characteristics. On the other hand, the
school’s effect on student academic achievement may also vary among individuals. For exam-
ple, while students usually benefit from smaller student/teacher ratios, these ratios and other
school features are unlikely to influence all types of students equally. Cross-level interactions in
multilevel modeling enable us to assess the degree to which relationships between individual
explanatory and outcome variables are moderated by group level variables.

Good examples of this class of multilevel studies can be drawn from population studies. It is
well-known that fertility levels vary among countries. In general, fertility is low in developed
countries and high in developing countries. Fertility has multi-level determinants. Individual
fertility behavior is determined not only by individual characteristics such as a couple’s prefer-
ence for children, ethnicity, education, and income at the micro level. Features of the social
contexts or social environments where the individuals live, such as culture or subculture, GDP,
average education level, and in particular, the intensity/efficacy of the family planning programs
(FPP) at the macro-level can also produce measurable effects. Assessing cross-level interactions
is very important in fertility studies. FPP analysts and officers are interested in knowing: What
individual characteristics influence individual fertility behaviors? Do family planning programs
work? How do differences in program implementation among various locations or macro-level
units affect individual fertility behaviors? And, for what classes of people are family planning
programs most effective? Multilevel modeling helps us to gauge how family planning programs.
interact with individual characteristics to affect fertility behavior.

Public health studies indicate that individual health behaviors and outcomes are jointly
determined by individual and environmental factors (Von Korff et al., 1992; Duncan et al.,
1996; Diez-Roux, 1998; Wang et al., 1998). For example, initiation of smoking among adoles-
cents may be associated with gender, ethnicity, school achievement and family background, as
well as the social setting in which the individual is imbedded, such as geographic location,
prevalence of smoking, and restrictions on smoking in public areas.

From these examples we can see that research interest in social science studies often centers
on questions like: 1) what and how explanatory variables measured at the individual level affect
the individual-level dependent variable, 2) what and how variables measured at the context or
group level affect the individual-level dependent variables, 3) how the relationships between the
individual-level explanatory and dependent variables vary across contexts or groups, and 4)
what and how group-level variables moderate the effects of individual level variables on the
individual-level dependent variable.
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To answer these questions, both micro and macro data are needed. A common challenge in
multilevel data is within-group observation dependence. That is, individuals in the same group
tend to be alike and share similar attitudes and behaviors relative to individuals from other
groups. For example, people living in the same neighborhood may share similarities with each
other because they are influenced by the same neighborhood socio-economic characteristics.
This may be true even for groupings that are only recently established. For example, students
who are in the same school may not be associated with each other before they get into the same
school. Once students enter a school, they become members of the same group. Once groupings
are established, individuals in the group will tend to share traits that differentiate them from
members of other groups. In statistical terms we say there exist within-group homogeneity and
between-group heterogeneity in the hierarchically structured data.

Traditional analytical methods such as Ordinary Lease Squares (OLS) Regression assume
that observations are independently, identically distributed (IID). The same assumption is
required for generalized linear models. Violation of this assumption will result in incorrect
inference in statistical analysis. Chapter 2 demonstrates how observation dependence can be
measured using an Intraclass Correlation coefficient (ICC). Studies show that even a small ICC
can lead to substantial Type-I errors in statistical testing, thus falsely rejecting a true null
hypothesis. Dealing with ICC has been a challenge in statistical analysis of multilevel data for
many years.

Multilevel models provide an appropriate analytical framework to deal with observation
dependence in multilevel data. More importantly, multilevel models permit us to explore the
nature and extent of the relationships at both micro and macro levels, as well as across levels.

1.2 Hierarchically structured data

Hierarchical social structures naturally give rise to hierarchical or multilevel data in which the
lower level units are nested or grouped in the next higher level units. Such hierarchically struc-
tured data exist in many real life situations. The simplest and the most often used multilevel data
are collected at two levels (i.e., one micro level and one macro level). For example, a study on
student academic achievement may collect information at the student level and at the school
level for multilevel modeling.

Multilevel designs can be readily extended to more than two levels. For example, students
are nested in classes, and classes nested in schools; thus observation units lie at three levels of a
hierarchy: the level-1 units are students; the level-2 units are classes; and the level-3 units are
schools. The lowest level units (e.g., students) are the micro-level units or individual units,
while the higher level units are the macro level units or context/group units.

Hierarchically structured data may arise in a variety of forms and from a variety of situa-
tions, either observed or by design. Survey data obtained from a complex sampling design are
hierarchically structured. Multi-stage or cluster sampling is conducted to take full advantage of
information from a hierarchy of study units. The first stage or “Primary Sampling Unit” (PSU)
is often a well-defined geographic unit (e.g., county in a state). Once the PSUs are randomly
selected, further stages of random selection are carried out within the PSUs (e.g., districts in a
county) until the final units (e.g., households or individuals) are selected (Kalton, 1983). As a
result, the survey data collected from cluster sampling design have a h1erarch1cal structure in
which individuals are nested within higher level sampling units.

Hierarchical data also frequently arise from experimental designs. For example, clinical
trails may be carried-out in randomly selected clinics or medical centers, thus creating data that
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have a hierarchical structure. However, in practice clinics and medical centers are often not ran-
domly selected. This is also true in many multi-site research projects. For example, a national
multi-site research project on public health is often conducted with many project sites located in
different regions, states, or cities. Very often, rather than being randomly selected, project sites
are selected based on the quality of the grant proposals, the level of seriousness of the health
problems under study, or the feasibility of conducting a successful study in a specific site. Al-
though the distribution of the project sites may be carefully taken into consideration, they are
not randomly selected, thus they are not representative of the corresponding higher level units in
the targeted population. As a result, inferences based on the multilevel analysis for non-
randomly selected study sites should be interpreted with caution.

Hierarchical data structures are not confined to cross-sectional settings with multiple units.
Individuals may also be higher level units. For example, in longitudinal or panel studies indi-
viduals are followed up over time. Data are collected repeatedly from the same individuals.
Such longitudinal data can be considered hierarchically structured. The repeated measures for
each individual at different times are level-1 observation units, and individuals become the
level-2 units. A third level can be introduced into the data structure, if the higher level units
(e.g., clinics) in which individuals are nested are available, to create a multilevel data with more
than two levels.

Depending on the situation, some individuals may be considered as level-1 units while other
individuals are higher level units. For example, patients and doctors can form a multilevel data
structure. As a doctor treats multiple patients, the doctor may be considered as a level-2 unit,
while patients are level-1 units. Similar situations include teachers and students, coaches and
athletes, as well as interviewers and interviewees.

Finally, a special type of hierarchical data arise from meta-analysis in which results or find-
ings from a series of related studies are summarized quantitatively to assess consistency or
inconsistency of study results (Glass, 1976). In meta-analysis data, individuals are nested within
specific studies. However, it is usually difficult or impossible for researchers to obtain the raw
data from all the studies of interest. As such, a special approach is required for multilevel mod-
eling of meta-analysis data. Detailed examples of formulating multilevel models for meta-
analysis are available in many studies (Goldstein et al., 2000; Raudenbush and Bryk, 2002).

1.3 Variables in multilevel data

In addition to the format of multilevel data, choosing the variables that describe the features of
the distinct levels of the hierarchical structure is another important consideration. For multilevel
analysis, the dependent variable is measured at the individual level and explanatory variables are
measured at both individual and group level or at both micro and macro levels. As in regular sta-
tistical analysis, individual explanatory variables usually include socio-demographic characteris-
tics (e.g., gender, ethnicity, education, age) and other measures such as psychological status and
behaviors, depending upon the analyst’s conceptual model.

Contextual variables are group level measures. They can be aggregate measures, such as
mean values of some individual measures (e.g., average family income) or proportion of indi-
viduals for a particular characteristic within a particular context (e.g., percentage of minority
population). These contextual variables represent the collective social characteristics of con-
texts/groups. They can be derived from either the sample or obtained separately from other
sources such as census or government statistics.



1.3 Variables in multilevel data 5

Many contextual variables are not aggregations of individual information. Some characteris-
tics are unique to contexts/groups and can’t be captured at the individual level. For example, in
studies of student school performance, contextual variables could include aggregate measures
such as student gender ratio or average enrollment test scores, and school feature measures such
as school ranking, student-teacher ratio or teacher’s level of experience. The former is an aggre-
gation of student data and can be generated from the sample; the latter represents contextual
aspects of the schools that must be collected from other sources at the school level.

Contextual variables can also be categorical measures. For example, in a multilevel study on
childhood obesity in which children are level-1 units and neighborhoods are the level-2 units.
The researcher may include a dummy variable (1-yes; 0-no) to indicate whether there are fast-
food restaurants in the neighborhood because easy access to fast food may have a significant
impact on children’s diet, thus on their obesity level.

Conceptually, one might use J-1 dummy variables to represent all the contextual features of
the J groups. This approach, however, is not feasible even with a moderately large number of
groups because too many dummy variables would be needed to represent the groups.

The following tables illustrate a fictional two-level data structure. Table 1.3.1 shows the
individual level outcome variable y; and independent variable x; for the i individual in the j*
group. There are a total of »; individuals in the j* group, and individuals in all the groups sum up
to the total sample size Y n; = N. z; is a contextual variable describing the group. The values of
the variable z; for specific groups (=1, 2, ..., J groups) are shown in Table 1.3.2.

Table 1.3.1 Individual level data

Unit Variable
Group Individual Yij Xy
1 1 5 11
1 2 3 8
1 n 2 7
2 1 6 12
2 2 9 10
2 n, 10 15
1 11 15
3 2 15 18
3 ns 16 20
J 1 7
J 2 5 9
J ny 6 8

Note:
m1, 1, and n; — Number of individuals in the first, second, and the /™ groups, respectively. Yn;=N.
yi and x;—Individual level outcome and independent variable, respectively.

Individual level data and group level data shown in Tables 1.3.1 and 1.3.2 are integrated into
a mixed data set and shown in Table 1.3.3. When merging the data sets, both individual ID and
group ID must be matched for every individual. As such, the same value of the contextual vari-
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able z; of group j is assigned to each individual in this group. Consequently, the value of z; does
not vary across individuals within the same group (see Table 1.3.3).

Table 1.3.2 Group level data

Group 2
1 8.7
2 12.3
3 17.6
J 8.0

Note:
z;— Contextual variable at the group level.

Table 1.3.3 Individual and group level mixed data

Unit Variable

Group Individual Yij Xij z
1 1 5 11 8.7
1 2 3 8 8.7
1 n 2 7 8.7
2 1 6 12 12.3
2 2 9 10 12.3
) 10 15 12.3
3 1 11 15 17.6
3 2 15 18 17.6
3 na 16 20 17.6
J 1 4 7 8.0
J 2 5 9 8.0
J ny 6 8 8.0

Note:
*—The same value of contextual variable z; of the 7™ group is assigned to each individual in the group.

The data format for multilevel modeling varies slightly by computer programs. Some pro-

grams require separate individual and groups data sets while others work with mixed data for-
mats like the one shown in Table 1.3.3.

1.4 Analytical problems with multilevel data

Prior to the availability of multilevel analytical techniques and computer programs, multilevel
data were analyzed separately at a single level, either the individual level or the group level':

! For the purpose of simplicity, only one independent variable is included in each model.
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Individual level model:

Y =B+ Bx; +€; (1.4.1)

Group level model:

Y, =V tNhX, +E; (1.4.2)

Equation 1.4.1 is a model at the individual level in which both dependent and explanatory
variables are measured at the individual level. Equation 1.4.2 is a model at the aggregate or
group level in which both dependent and explanatory variables are measured as the mean values
of the corresponding individual level variables. The underlying problem encountered in such an
approach is that it ignores the multilevel structure of the data. Model 1.4.1 ignores group member-
ship and focuses. exclusively on individual-level characteristics and inter-individual variation and
thus ignores the potential importance of group-level features in influencing individual-level out-
comes. Another serious problem with this model is that it assumes the independence of observa-
tions. As discussed in Section 1.1, generally individuals within each group are more alike com-
pared with those in other groups. Thus the within-group observations are unlikely to be
independent.

Model! 1.4.1 cannot control the intraclass correlation coefficient (ICC), it ignores the within-
group observation dependence, and thus violates the basic assumption underlying traditional re-
gression models. As a result, standard errors of parameter estimates would be biased down-
wards, resulting in a large Type I error — falsely rejecting a true null hypothesis in statistical
significance testing (De Leeuw and Kreft, 1986; Snijders and Bosker, 1999; Hox, 1998, 2002).
Even a small ICC can lead to Type I errors that are much larger than the nominal alpha level.
(Hox, 1998; Barcikowski, 1981). Consequently, analyzing multilevel data with traditional re-
gression models can produce misleading conclusions.

Model 1.4.2 focuses exclusively on the inter-group variation and on the data aggregated to
the group level. The group-level model eliminates the observation dependence problem, but
ignores the role of individual-level variables in shaping the outcome on one hand; and on the
other hand, it substantially reduces statistical power by using a group level sample with a much
smaller sample size.

Traditionally, researchers tended to use model results at one level to draw statistical infer-
ences at another level. This has proven incorrect. The results from the two single level models
frequently differ either in magnitude or in sign. The relationships found at the group level are
not reliable predictors for relationships at the individual level, and vice versa. This phenomenon
is known as the ecological fallacy, aggregation bias, or the Robinson effect (Robinson, 1950).

What causes Robinsin effect? Model 1.4.2 analyzes the variation in variable y, at the group
level. Aggregating individual measures changes their meaning. If x; is a continuous measure
(e.g., age), then X; would be the average or mean value of the x;; (e.g., mean age) in the j™ group
of individuals. If x; is a dichotomous variable, denoting gender (e.g., 1-male; O-female),
then x; would be the proportion of males in the j™ group. Clearly, x; and X ; are different meas-
ures, and we should not expect them to have the same effect in separate models based on either
individual or group data.

A critical analytical problem with multilevel data is the heterogeneity of relationships of in-
dependent variables with the dependent variable. The relationship between individual level
dependent and independent variables may vary across groups. For example, suppose we were
studying academic performance of minority students in high schools. The average academic per-
formance score for the minority students may vary across schools. The effect of minority status
on the dependent variable may vary across schools for a variety of reasons. The proportion of
minority students in a school, a “sample composition contextual variable” might partially
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account for the variation in performance in addition to other contextual variables at the school
level.

In the past, heterogeneity of micro level relationships was often studied using the following

fixed-effect regression model:
Yy =B+ Bx; + BoX, + Bix; X, +€; (1.4.3)
where y; denotes the performance score for the i student in the /™ school; x; is a dummy
variable (1-yes; 0-no) indicating the minority status at the student level; and X . denotes the pro-
portion of minority students in the j school. In this model the macro-level (e.g., school level)
variables were disaggregated to the micro-level (e.g., student level). In this example, students
are assigned various school-level variables and all students in the same school are assigned the
same value on the school-level variable (e.g., X;). The model is then run at the student level.
Slope coefficients of £, and 3, are the main effects of the individual level variable x;; and school
level variable X, respectively. The slope coefficient f; is the interaction of these two variables.
If the cross-level interaction is statistically significant, we conclude that the relation between
student’s minority status and the performance score is influenced or moderated by the propor-
tion of minority students at the school level. This kind of model takes into account the effects of
contextual variables on the relationships of individual explanatory variables and the dependent
variable at individual level.

One serious problem with this model is that it treats observations as independent though they
are not, thus leading to biased standard error estimates. In addition, in this fixed-effect model,
the variation in the intercept and slope coefficients are assumed to be perfectly explained by
group level variables without error, which is highly unlikely.

Van de Eeden (1988) and others have examined the heterogeneity of relationships problem
using a two-step approach. In Step 1, they estimated the individual level regression models for
each group separately. The assumption of invariance in the intercept and slope coefficients is
tested by running multi-group regression models with and without equality restrictions on the
coefficients across groups, using structural equation modeling software such as LISREL. If the
coefficients show significant variance across groups, then the second step is to regress each of
the regression coefficients on the contextual variables at the group level.

Although this approach enables analysts to test the significance of variations in the regres-
sion coefficients estimated in Step 1, it has several limitations. OLS models are used at both
Steps 1 and 2, even though it is technically incorrect to use OLS to estimate the standard errors
in the second step (De Leeuw & Kreft, 1986, p. 61). It is also impractical to run separate
regression for each group when the number of groups is large, and particularly when the number
of observations per group is small. This approach treats the groups as unrelated and ignores the
likelihood that the groups are drawn from a larger population of groups that share common
attributes.

Given the shorticomings of traditional methods, a new statistical method, called multilevel
modeling is needed. Multilevel models are explicitly designed to analyze hierarchically struc-
tured data, modeling variables at both micro and macro levels simultaneously without aggrega-
tion or disaggregation. In the following section we will discuss the advantages as well as the
limitations of multilevel models for multilevel data analysis.



