Quantum

Mechamcs

Askold M.Perelomov
Yakov B.Zel'dovich

|%/\ A

-a d X

4

World Scientific
L ANOR R



Quantum
Mechanics

‘Selected Topics



Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Farrer Road, Singapore 912805

USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

QUANTUM MECHANICS — SELECTED TOPICS

Copyright © 1998 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, maynot.be reproduced in any form or by any means,
electronic or mechanical, including phot mﬁﬁ ;'r’;cq_rd'ing“br any information storage and retrieval
system now known or to be invented, ut Wi'i{tme'rmi:fion from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-02-3550-X

A ht REHEHRA AREEER, BT PERMBK KT,



Preface

Just as a “demographic explosion” gives much trouble to sociologists and
economists, the problem of an “information explosion” is in the face of sci-
entists and teachers in all its magnitude.

The difference between both problems is in the fact that the birth-rate of
the population can be limited much more easily than the birth-rate of articles.

Only the editors of scientific journals dream about the Golden Age when
authors themselves would criticize their own works and reject all of them except
brilliant ones.

The birth of an article which represents even a small step forward from
the generally accepted level of knowledge gives a satisfaction and a pleasure
which the author cannot overcome. In our opinion, one should not try to fight
against the “information explosion”, but rather try to direct its energy, i.e.
efforts of the huge army of scientists, into a common channel.

What is important for chemistry and zoology is perhaps the classification
of information and the mechanization of a search for materials concerning a
given chemical compound or biological species.

As far as theoretical physics, we believe that overviews and monographs
summarizing the results of some studies in the fields of today are of utmost im-
portance. For an overview, one should select without a bias the most valuable
results from a large number of works.

As a matter of fact, text-books in which the material is revised as science
is developed, pursue the same goal. In the preface to the famouse Course of
Theoretical Physics, L.D. Landau and E.M. Lifshitz state that learning of this
Course provides the base which will be sufficient for understanding of original
publications in journals.

One should note that in recent years there has been a certain gap between
text-books and new original works. The present book aims to reduce this gap.

It is intended for to be intermediate between a course in quantum mechan-
ics and a present-day study of a number of problems in atomic, nuclear physics
and partly in physics of elementary particles.

This monograph is concerned with the following general physical problems.

1. Systems with a low binding energy, namely the deuteron and the nega-
tively charged hydrogen ion.

2. Systems with the Coulomb potential — the hydrogen atom.
3. Unstable systems, such as radioactive nuclei, and autoionization states.

4. The detailed theory of the harmonic oscillator and its application to
oscillations of the electromagnetic field in laser systems.

ix
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5. The ionization of bound states (a negative ion or an atom) by the field .
of a strong light wave (such as a laser light pulse focused by a lens).

The book also deals with some methods of theoretical physics which are
discussed here in more detail than in most text-books. These are:

1. Analytic properties of the wave function and scattering matrix.
. The Green function of the Schrodinger equation.
The quasiclassical approximation.

. The inverse scattering problem.

. Exact solutions of non-stationary problems.

It is not customary to point out in the preface of a book which problems
are not touched upon, for the latter are difficult to limit, and besides this might
prejudge to authors. Deviating from the tradition, we mention two problems
which might be naturally expected to be included in a modern course of quan-
tum mechanics, namely the Regge poles and the Feynman path integrals. Both
questions are elucidated in the literature, and we consider it is reasonable to
omit them.

The present monograph is a revised and extended version of a part of the
book Scattering, Reactions and Decays in Non-relativistic Quantum Mechan-
ics (Nauka: Moscow, 1971, in Russian) by A.I. Baz’, A.M. Perelomov and
Ya.B. Zel'dovich; namely of the part that was written by the second and the
third authors. We recommend Chapters 8 to 11 of this book as an additional
material.

Moscow, October 1987
A.M. Perelomov

Ya.B. Zel’dovich
Addendum

To my great regreat, I had to complete this book without the participation
of my teacher and co-author, the remarkable scientist and human being, Aca-
demician Ya.B. Zel’dovich.

The author of these lines has been learned much from Ya.B. Zel’dovich
and feels a great obligation towards him. His untimely decease interrupted
our joint work on the book. However, the general scheme for compiling of it
made by Ya.B. Zel’dovich and pages written by him are remained unchanged,
although on technical reasons there is a considerable delay in the publication.

Zaragoza, April 1998
A.M. Perelomov
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CHAPTER 1

DISCRETE SPECTRUM

1. Introduction

This Chapter concerns some properties of solutions of the Schrédinger
equation belonging to the discrete spectrum. As it is well known, such solutions
describe bound states. Three cases will be considered here: (a) states with a
low binding energy; (b) bound states in the Coulomb field; (c) states of a
three-dimensional harmonic oscillator.

States with the binding energy ¢ that is small compared to the depth Up
of a potential well are of interest in some applications. The ground state of a
deuteron is an example. The properties of these states are discussed in detail
in Sec. 2 and Sec. 3 with a special attention to the case of e — 0, i.e. when
the level just appears. In Sec. 4 the motion of particle in the field of several
potential wells is considered. Also the important notation of pseudopotential
is introduced and validated.

Cases (b) and (c) can be found almost in any textbook on quantum me-
chanics. By this reason, we pay attention here only to the existence of specific
properties of states, when a degeneracy (usually called the “accidental” de-
generacy) of states occurs with different values of the angular momentum {.
Therefore superpositions of states with different values of [ may be the station-
ary states, and the standard classification of levels can be supplemented by an
alternative classification.

One should not understand literally the word “accidental” added to “de-
generacy”. Such a situation is not accidental. The existence of closed trajecto-
ries is a consequence of a particular property of classical mechanical systems.
In quanturn mechanics, the Schrodinger equation for such systems permits the
separation of variables in several coordinate systems. However, a more im-
portant property is the existence of a transformation group that leaves the
Schrodinger equation invariant. The other properties follow from the existence
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of this transformation group. These questions are considered in Sec. 5 for
the Coulomb potential and in Sec. 6 for the oscillator. In this latter one the
so-called “coherent” states are discussed. These non-stationary states have a
number of interesting properties, for example the property of the closest simi-
larity (in some sense of the word) to the properties of the classical oscillator.

Sec. 7 is devoted to the derivation of the so-called virial theorem and its
generalization. The last Section of this Chapter concerns statistical properties
of systems of identical particles.

Let us say now a few words how to read this book. In the first Section
only basic notations are given. A reader who has recently studied a standard
quantum mechanics course should not read this Section because he may get
a wrong impression about whole book and put it aside before of reaching of
topics that may be unknown and of interest for him.

Then we recall some of the main principles of quantum mechanics.

In non-relativistic quantum mechanics, the state of system is completely
described by the wave function ¥, the time-dependence of which is determined
by the Schrédinger equation

., O¥
th BT HY, (1.1)
where H is the Hamiltonian of the system, and, & is the Planck constant.

We shall mainly consider (except Sec. 4 of Ch. 6, and Ch. 7) the case
when the Hamiltonian does not depend explicitly on time. In this case, there
are stationary states, i.e. states for which the probability density |¥|? does
not vary with time!l

The wave function of such a state has the form

Y(t) = pexp (— %) :

From this it follows that 1 is an eigenfunction of the Hamiltonian
Hy = Evy, (1.2)

which describes a state with a definite real energy E.
In the case of one particle in a constant external field,

h2
H=~3=A+U(r),

1For the Hamiltonians depending on parameteres, after performing closed loops in the pa-
rameter space, we may obtain geometric phases. There has been a great interest in such
questions after the work of M. Berry [Be 1984] (see the book [GPP 1989)).
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2
(— 2h—_m A+ U(r)) P(r) = Eo(x). (1.3)

The wave function ¥(r) must satisfy the usual conditions, i.e. it is single-valued
and continuous everywhere in the space. The condition of single-valuedness of
the wave function was considered in detail by W. Pauli [Pa 1933}, [Pa 1939].
It leads to nontrivial effects such as the quantization of magnetic flux in a
multi-connected superconductor [Lo 1950], [BY 1961] and the occurrence of
quantized vortices in a liquid helium [On 1949], [Fe 1955]. It plays a significant
role in the derivation of the Bohr-Sommerfeld quantization conditions in the
multi-dimensional case (see Sec. 3 of Ch. 6).

In practice, the potential U(r) often is spherically symmetric, i.e. depends
only on |r|. In such a field, the angular momentum operator L commutes @T.
with the Hamiltonian H (this corresponds to the conservation of the angular
momentum in classical mechanics). Furthermore, the operator H commutes
with the space inversion operator P (this property has not any analogue in
classical mechanics [Wi 1964a]). Since the operators H,L?, L, and P commute
with one another, the eigenstates of H may be simultaneously the eim
of L2, L, and P. In other words, a stationary state may be characterized by:

(i) a definite orbital angular momentum ! with eigenvalue of L2 equal to I(I+1)
where [ is an integer;

(ii) a definite projection m of the angular momentum L; on an arbitrary axis
. z, m taking 2 + 1 values from —1 to +1;

(iii) a definite parity eigenvalue, P=+lor P=-1.

In the one-particle problem, the parity is completely determined by the
orbital angular momentum P = (=1)!, i.e. P coincides the parity of [.

From the foregoing it follows that the Schrodinger equation has solutions
of the form

Yim(r) = Ri(r) Yim (0, ¢)- (1.4)
Here @ and ¢ are the polar and azimuthal angles of the vector r, respectively;

Yim (8, p) are spherical harmonics, and R;(r) is a function depending on r only.
The substitution of Eq.. (1.4) into Eq. (1.3) yields the following equation for

- Ld (2R | [ pony- Dm0 09

r2 dr dr r2

Let us introduce now the new function

xi(r) = r Ri(r), (1.6)
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which satisfies the equation
I I+ 1
4 i [lc'“’— (V( y il ))] xt =0, (1.7)

in which the first derivative does not enter. Here k = \/2mE/h® and V =
(2m/A*)U. t
In the case when we have not misunderstanding, we will refer to V also as

the potential. The centrifugal potential /(I+1)/r? can be included in V. Then
Eq. (1.7) takes the form

X+ (B =V(r)) xx = 0. (1.8)

The properties of this equation are well known from quantum mechanics
textbooks, first of all from Quantum Mechanics by L.D. Landau and E.M.
Lifshitz [LL 1965]. Comprehensive courses [Ne 1982] and [Th 1981], [Th 1983]
are also noteworthy. A detailed account of the history of the creation and
development of quantum mechanical concepts is given in the book [Ja 1966]
and in the collection of the original works on quantum mechanics [Wa 1967].
A mathematically rigorous investigation of a number of principal problems of
quantum mechanics, for instance of the measurement process, can be found in
the book [Ne 1932]. The modern interpretation of these questions is given in
[Ja 1968]. Approximate methods in quantum mechanics are considered in the
book [KM 1969].

In the case of non-singular potential, the function ¥(r) is finite, thus lead-
ing to the following boundary conditions for x; :

xk(r) =0 at r—0,

Xk(r)/r is finite at r#0, r — co. (2:9)

Besides it is natural to require xx and x} to be continuous for » > 0. This is
consequence of the fact that Eq. (1.8) contains second-order derivatives. If x}
or xx is discontinuous, the right side of Eq. (1.8) is non-zero and contains §—
or a é'-function.

In cases when V/(r) tends to a finite limit at » — oo, the origin of the
energy scale is chosen so that V(r) vanishes at infinity.

Almost all interactions between particles in the nature (except the Coulomb
interaction and some other ones) are described by rapidly decreasing poten-
tials, i.e. by potentials which decrease more rapidly than 1/r at large r. In
many cases at r larger than some R, one may neglect by these interactions and
suppose that V(r) = 0 at r > R. Let us call such potentials as short-range
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potentials. The introduction of the cut-off radius R considerably simplifies all
formulae. This is the case we consider first. The centrifugal potential cannot
be regarded as a short-range potential. In order not to complicate the problem,
let us take the orbital momentum { to be zero.
Thus, we came to the problem: one needs to find all solutions xk(r) of
equations
Xi+k2=V()xe=0 at r<R,

Xt +k*xe =0 at r> R, (1.10)

which satisfy conditions Eq. (1.9). In this case, the wave function has the form

1 xe(r)
r) = Rio(r) Yoo(0, p) = ——=—. 1.11
P(r) ko(r) Yoo(9, ¥) " (1.11)
As can be seen from the second equation of Eq. (1.10), in the region of
r > R there exist two solutions

xii)(r) = exp (L ikr). (1.12)

For rapidly decreasing potentials, there are also two solutions, xsci)(r), which
at large r behave like exp(+ ikr).

These solutions are often denoted by f(Zk,r). Their properties were
considered in detail in [Jo 1947]. In the case of the Coulomb-tail potentials,
U ~ a/r at r — oo, the asymptotic form of the functions xgi) is exp[+ i(kr —
nln 2kr)], where n = ma/h%k. At r < R there are also two solutions, but only
one of them can be used because the another does not satisfy the boundary
condition at r = 0.

Let us look for xx at r — 0 in the form of a power function r?. From Eq.
(1.10) we have

o(lc—1)~ —r2(k? - V(r)).

If r2V(r) — 0 at r — 0, then o has two values: 0 and 1. (If this condition
is not satisfied, the potential is called singular. New qualitative phenomena
occurring in this case will be discussed in Appendix A). Accordingly, at 7 — 0
the Schrodinger equation allows two solutions:

b
1111(7‘) —* @, ¢2(T) = ;1
where a and b are constants. However, the solution 2 must be rejected because

A g- = —4rb 63(1‘).
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Consequently, 3, does not satisfy the Schrodinger equation at the point r = 0.
Solutions of this type are used for describing of point interactions. Hence there
remains only the solution 1 corresponding to o = 1.

The above reasoning may be viewed as the requirement of the boundary
condition x(r) — 0 at r — 0. We write xﬁo) (r) for the solution satisfying this
condition.

Now we proceed to the discussion of domains of positive and negative
energies. The positive-energy case will be discussed in more detail in Ch. 2.
Positive energies correspond to real values of k. In this case both solutions Eq.
(1.12) remain finite at all values of » > R, i.e. both solutions are acceptable in
this region. The general solution at » > R may be written as

xi(r) = A(k) (X = (k) x§P) . (1.13)

At r = R this solution is required to be continuously matched with the solution
in the inner domain,

k) (7 - smx)| = ),
al (1.14)
AR) (7 - sm )| = ).

: The matching can always be done by appropriate choosing of A and S.
Indeed, regarding Eq. (1.14) as a system of equations for A and S, one can
obtain
S(k) = (%8 = X% 0P XD = x{Px) R
(1.15)
Ak = OGN = xiOx k|

Thus, for each positive value of the energy there exists one and only one so-
lution of the Schrédinger equation. The physical meaning of this solution will
be discussed below.

At negative energies the situation changes essentially. Negative values of
E correspond to imaginary k = i|k|. As usual, we consider k to be in the
upper halfplane. If k is in the lower halfplane, the quantities x*) and x(=)
should be exchanged.

The solution x(_) = exp(|k|r) increases exponentially at r — oo and con-
sequently does not satisfy the second condition in Eq. (1.9). Thus the most
general solution at » > R has the form

A(R) x{P(r), (1.16)
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and the matching condition for external and internal functions has the form

(+) ()
Xk Xk v

) 3 O a8
Xk r=R k Ir=R

In fact, this condition is a transcendental equation for k, and therefore may
be satisfied only at some discrete imaginary k = k, (or at discrete negative
energies E,, equivalently).

From Eq. (1.17) it follows that the logarithmic derivative of the function
xio) must be also negative.

As we will see later, this occurs if V(r) is mainly negative (corresponding
to the attraction) and its magnitude is sufficiently large. In this case, at 7 > R
the functions of the discrete spectrum have the form

Xkn(r) = A(kn) X3P (r) = A(ka) exp(—|kn|r),

i.e. decrease exponentially to zero at large r. Note that in the case of
rapidly decreasing potentials the function xi,(r) behaves asymptotically like
exp(—|kn|r) at » — oo, and in the case of the Coulomb-tail potentials (U(r) ~
a/r at r — 00),

Xea(r) ~ 77" exp(=lknlr), 7 = ma/B?|ka|.

At 7 < R the functions are finite, and therefore the integral

/ ” e ()P dr (1.18)

converges. The function x, is usually normalized so that the above integral is
equal to unity. Since xx, decreases exponentially to zero at r > R, the solution
characterizes a space-localized state. Such solutions correspond to the classical
finite motion of a particle with the negative energy. In the usual case of non-
singular potential, such states are called bound states. For a singular potential,
the situation becomes more complicated (see Appendix A).

Thus, at positive energies the Schrodinger equation has a solution (satis-
fying the boundary conditions) at each positive value of E (i.e. at k* > 0), the
value of [ being arbitrary.

If the potential oscillates when r — oo and does not decreases rapidly
enough at infinity, then the positive energy bound states-may occur (see Ap-
pendix A).

At negative energies and fixed [, solutions are possible (if at all possible)
only at some discrete values E = E,;. We may formulate the result as fol-
lows: the spectrum of positive energy eigenvalues is continuous, and one of the
negative energy eigenvalues is discrete.
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In the case of discrete spectrum, each level has a definite value of I. The
levels with equal { but different m are degenerate. This is a consequence of the
spherical symmetry of the potential.

However, at [ # 0 the solutions are not spherically symmetric. Their
angular dependence is determined by the angular part Yin, (6, ¢) of the wave
function. Note that the sum 3" __, |Vim (6, @)|? is independent on @ and P.
From this it follows that if at a given [ the particle resides with the same prob-
ability in states with all possible values of m, then the probability density of
finding of the particle at a given point of space possesses a spherical symme-
try. The above property of the sum explains the fact that the charge density
is spherically symmetric in the case of closed electron shells of an atom or of a
nucleus. y

Solutions with definite { also possess a definite parity P. The degeneracy
corresponding to different m at the same ! cannot change anything because all
degenerate levels and any linear combination of them (that is a solution as well)
possess the same P. The probability density |¢|® (or the charge density for a
charged particle) does not change under the parity transformation because %
goes into ¥ or —.

In this way, it is proved that the charge distribution in a spherically sym-
metric potential needs to have a centre of symmetry, although it needs not
necessary be spherically symmetric. Therefore, the electric dipole moment
should be equal to zero.

In the special important case of the Coulomb potential, U = —Ze?/r, a
so-called accidental degeneracy occurs, namely the exact equality of energies
of levels with different [. Here the conclusion about the zero dipole moment is
violated. The particle may be in a state with a non-zero dipole moment. This
phenomenon will be discussed in Sec. 5.

2. States with small binding energy

Let us consider the Schrédinger equation at U(r) < 0. One should note
that in this case the difference between classical and quantum mechanics is
as follows: in classical mechanics, any potential well, even the smallest one is
sufficient to bind a particle. The particle may be at rest at the bottom of this
well, i.e. there exists a solution with F = Upnin < 0.

It turns out that in three-dimensional problem of quantum mechanics,
there are definite critical conditions for the existence of at least one discrete
level. For this, a well must be sufficiently wide and deep. This result is
qualitatively understandable from the viewpoint of the uncertainty principle:



