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Weak controllability in 1/O-CGs, a parallel

flow model of computation®

Mario Albarran Figueroa
Mathematics and Computer Science Department

San Jose State University, San Jose, CA 95192-0103

albarran @ sjsumcs. sjsu. edu

Abstract

Input/Output Control Graphs (I/O-CG) are pre-
sented as a Parallel Flow Model of computation (PFM)
suitable for the description and analysis of Discrete
Event Systems (DES) which interact with an environ-
ment. 1/O-CGs, developed by Albarran (1976), stem
from Petri Nets (PN), (1972), and are particularly
suited for modelling parallel DESs such as computation-
al, manufacturing and robotic systems. [/O-CGs retain
the expressive power of PNs to model parallelism while
providing explicit modelling of interactions with the en-
vironment by means of inputs and outputs. While PNs
can produce unbounded state spaces, 1/0-CGs always
produce finite state spaces while allowing all possible
topologies. 1/O-CGs, as well as PNs, are essentially

non-deterministic and consequently Kalman’s determin-

(D) Weak controllability in [/O-CGs, a parallel flow model of computation Jan-
uary 23, 1996
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istic controllability is not directly applicable. This pa-
per reports the extension (Albarran, 1976) of the con.
trollability concept to the non-deterministic case. We
first introduce the I/O-CG model and formally define
it. We show that every 1/0-CG can be associated with
a transition diagram TD(1/O-CG) which represents its
state space. We then group together transitions accord-
ing to their properties and build paths between states in
a TD. A set of definitions which reflect the “degree” of
controllability of an 1/O-CG is made based on paths
which fulfill certain requirements. These paths range
from the strictly deterministic case, where all state
transitions produce a unique path, to “weaker” forms
where state transitions may take different paths for the
same Input sequence.

Keyword Petri Nets, Weak Controllability

1. The I/0-CG model

An 1/0-CG is formed by Control Cells (CC) and Control
Operators (CO), similar to places and transitions in PNs respec-
tively. CCs, drawn as squares, can only hold a 1 or 2 0 (one or
no tokens. ) They represent conditions and can be thought of as
state variables. COs, drawn as circles, represent events. There
are four types of arcs in I[/O-CGs.

* Aninput arc (also called a 1-0 arc) is an arrow from a CC to a
CO. CO becomes enabled when CC holds a 1. After a finite,
arbitrary amount of time, CO fires changing the 1 into a 0

* An output arc (0-1) joins a CO to a CC. The CO becomes en-
abled when the CC holds a 0 (no tokens) and after firing CC
« 9.



holds a 1. Requiring a 0 in the CC ensures no token accumula-
tion

« A read-only arc (1-1) is a double headed arrow joining a CC
to a CO. The CO becomes enabled when the CC holds a 1 and
after firing the CC keeps the 1

+ A zero arc (0-0) is an arrow ending in a small circle that goes
from a CC to a CO. The CO operator becomes enabled when
the CC holds a 0 and after firing the CC keeps the 0

. A CC with a notch on the left hand side is an Input/Output
Control Cell. An I/O-CC gets changed by both, the 1/0-CG
and its environment and its behavior is similar to that of CCs

« A CO that is enabled with respect to all CCs connected to it is
said to be enabled. Once enabled a CO fires changing the val-
ues of its connected CC’s. When several COs are enabled they
all have the same probability of firing but only one, arbitrari-
ly chosen, fires at any one time. Others, if still enabled, fol-
low suit. COs are also called operators while CCs are also
called cells.

Figure 1 depicts an 1/0-CG that represents the 3 dining
philosophers, a simplification of the 5 dining philosophers prob-
lem. The philosopher’s algorithm is simple :think, grab 2 forks,
cat and release 2 forks. Let us separately consider philosopher
“Phil 17. Phil 1 is thinking when think 1 holds a 1. Thinking
lasts until the philosopher decides to eat. If Phil 1’s forks are
available (Forkl and Fork2 both hold 1) then he or she can eat
by grabbing them. This set of conditions is enforced by control
operator GF1 since it only becomes enabled when think 1 and 1/
O-CCs Fork 1 and Fork 2 contain a 1. In addition, and different
from PNs, CC eat 1 must contain a zero since it is joined to GF
1 by an output (0-1) arc! Output arcs make 1/0-CGs different

¢ 3



from PNs by enforcing an interlocking property which prevents
the accumulation of tokens in a CC. It is this interlocking prop-
erty which guarantees the finiteness of the state space of an 1/0-
CG since any CC can only hold a 0 or 2 1.

Once enabled GF1 fires after a finite, arbitrary amount of
time resulting in the following changes : think 1, Forkl and
Fork2 contain 0 and eat 1 holds 1. This assignment tells us that
Phil 1 is eating and that the forks are being used by him and
therefore unavailable.

Notice that Phil 1 is in competition with Phil2 and Phil3 for
the use of the forks since these can be taken by either of 2
philosophers in a mutually exclusive fashion. Fork] can be taken
by Phil 1 and Phil 3 (but not by both at the same time!), Fork
2 by Phil 1 and Phil 2 and, finally, Fork 3 by Phil 2 and Phil 3.
The arrangement of Forkl, GF 3 and GF 1 is the typical repre-
sentation of mutual exclusion and ensures that Fork1 is given to
either, Phil 1 or Phil 3. When GF 1 and GF 3 are enabled at the
same time only one will fire and its occurrence will automatically
disable the other since Fork 1 will hold a 0 disabling it.

Initially all philosophers are thinking and all forks are avail
able, Forkl, Fork2, Fork3, think 1, think 2 and think 3 hold 1
and the rest of the cells hold 0, Operators GF 1, GF 2 and GF
3 are all enabled and any one can fire at any one time in a non-de-
terministic fashion. Once a philosopher eats it releases the forks
(when Phil 1 is done eating RF 1 is enabled and fires returning
Fork 1 and Fork 2) and the cycle starts over again. Over time
one expects the system to be fair to philosophers so that they eat
approximately the same number of times, This expectation is
true since multiple enabled operators have the same probability
of occurrence.

040



Phill think !
Fork1 I l Fork2
GF1 .
. eat] ' think2
think3
GF3 \ . GF2
eat3 eat?

© () O

Phil3 Phil2
Fork3

The 3 dining philosophers

Figure 1

2. I/0-CGs and their Transition diagrams

2.1 Formal definition of an 1/O-CG

An I/O-CG is a 9 tuple: I/O-CG=(C, Ce, V, O, A, Ta»

fas Op, cl) where



* (18 a set of CCs
* Ce. a2 non-empty subset of C, is the set of Input /Output CCs
» V= {0, 1} is the set of values CCs can hold
* O 1s a set of control operators
* A s a set of arcs
« Ty =1{Z, W, I, R} is the set of different types of arcs
* ts:A— T, assigns each arc a type
* op:A — O connects arcs to operators and
*» cl:A — C connects ares to CCs
» C; = C — Cgis the set of “internal CCs. ”
2. 1. 1 Definition of the state space of 1/0-CGs

An internal state Q is an assignment of 0 and 1 values to in-
ternal CCs.
c Q:C,—V

Internal states, also called states, tell about the state of an
I/0-CG at a particular moment. Since CCs can only hold 0 or 1
the maximum number of internal states is 2", where n is the car-
dinality of C.

An environmental assignment assigns 0 and 1 values to 1/0
CCs.
c h:Ce—>V

A total states is an assignment of 0 and 1 values to all CCs.
e s.C >V

Total states represent an internal state plus a particular in-
put assignment of the environment to I/O cells. We therefore
have two conditions for an operator to become enabled while in
state s, internal and environmental enabling.

The internal state space S, of an I/O-CG is the set of all pos-
sible internal states.
S; = V&
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Since the maximum number of internal states is 2% the cardi-
nality of S, is always finite,
2. 1. 2 Properties of COs

Endogenous COs are connected only to internal CCs. En-
abling of endogenous COs does not need any input/output from
the environment,

Exogenous COs are connected to at least one 1/O CC. An
endogenous CO becomes “internally enabled” when all CCs con-
tain the values that their connecting arcs require. An exogenous
operator becomes “environmentally enabled” when all 1/O CCs
have the values that their connecting arcs require. To become en-
abled an exogenous CO needs to be both, internally and environ-
mentally enabled. In figure 1 all operators are exogenous.

2. 1. 3 The initial state and the reachable state space of an I/0-
CG

Associated with an I/O-CG there is an initial state S, (also
called initial marking) which assigns a2 0 or a 1 to internal CCs.
A marking can be represented as a vector of length N, the num-
ber of internal cells. In figure 1 the vector’s length is 6 (thinkl,
eatl, think2, eat2, think3, eat3). The initial marking should be
(1, 0, 1, 0, 1, 0) since all philosophers are initially thinking.
The reachable state space Sx(S,) of an 1/O-CG is the set of all
states which can be reached, under all possible inputs, by the I/
O-CG when given the initial state S,.

2. 2 Transition Diagrams

Transition Diagrams (TD) are a general, concise model to
represent DESs. A TD is a directed graph where nodes represent
states and arcs join states. An arc is drawn from state Q to state

R if R results from the occurrence of an event while the DES is in
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state . Arcs are sometimes labelled with the name of the event
or with the input needed. Finite state machines are examples of
input driven TDs. Most PFMs of computation rely partly on
TDs to draw properties of the systems they model.

Associated with an 1/O-CG there is a Transition Diagram
TD(I/0O-CG) which represents all possible behaviors in a similar
way in which a reachability graph is associated with a PNs. Fig-
ure 2 represents the diagram for the 1/0-CG in figure 1 when
given as initial state the (1, 0, 1, 0, 1, 0) vector, A transition
from state (1, 0, 1, 0, 1, 0) to state (0, 1,1, 0, 1, 0) is possi-
ble if CCs think 1 and eatl hold 1 and 0 respectively, making
GF1 internally enabled. Since GF 1 is exogenous it needs also to
become environmentally enabled by having 1/O CCs Fork! and
Fork2 hold 1. By putting ones in Forkl and Fork? the environ-
ment enables GF1 which produces state (0, 1, 1, 0, 1, 0) after
firing and leaves I/O CCs Fork] and Fork? holding zeroes. What
the next state tells us is that Phil | is eating using forkl and
fork2, phil2 and phil3 are waiting for one fork and therefore the
only CO enabled is RF1. When RF1 fires the forks are returned.
2.2. 1 Labels used in Transition Diagrams for 1/0-CGs

Let B be the set of 1/0-labels

« B={0,1, 4}C;

There are two kinds of 1/0-labels associated with an opera-
tor p. Input label inlab(p) describes the environmental assign-
ment needed to enable p while output label outlab (#) describes
the new values the 1/O cells will have after p fires. A d (don’t
care) in an 1/O-label means the operator is not connected to that
cell and consequently the cell’s value is irrelevant for the
operator’s enabling. An environmental assignment “covers” an

[/O-label if all zeroes and ones in the label are matched by the
« 8



values of the I/O cells. Environmental assignment Fork 1=1,
Fork 2=1 and Fork 3=0 covers inlab(GF1)=<(1, 1, d) in figure
2 making GF1 enabled if the internal state is (1, 0, 1, 0, 1, 0).
Formally, a label for an operator p is a pair of 1/0-labels.
+ label(p) = (inlab(p), outlab(p))
Arcs in TDs are labelled with a pair: (p, (inlab(p), outlab
(pIN.

<1,0,1,0,1,0>
RF1,<<0,0,d><1.1,d A <RF3,<<0,d,0>,<1,d,1>>>
>>
< ,<<0,0,d><1,1,d> <GF3,<<1,d,1>,<0,d,0>>>

<RF2,<d,0,0>,<d,1,1>>>

1.1.d><0.0.d

<GFlf< <0.0,d>>> <GF2,<<d,1,1>.<d.0,03>>
/ Yy

<0.1,1.0,1.0> <1,00.1,1,0> <1,0,1,0,0,1>

Transition Diagram for the

3 dining philosophers

Figure 2

2. 2. 2 Transition Diagrams for 1/0-CGs

A Transition Diagram TD=(S, L, T, ps, ns, lab) for an
1/O-CG=(C, Ces V, O, A, Ta, ta, 0p, cl) with an initial state
S, is obtained by performing the mapping TD (I/O-CG) as fol-
lows
« S = Sk(Sy)

Let Q and R be two internal states. L, the set of labels, is a

subset of the power set;



« PO X (B % B)),
. K(Q: R) = {{p, label (p)) such that R results from Q after
p fires)
*« L = {K(Q, R) such that @Q and R are in S}
L s the set of labels for all transitions spawned by the 1/0-
CG from S,.
T, the set of all transitions, is a subset of S X L X S
« T = {{Q, K@, R), R) such that Q and R are in S
Function ps extracts the previous state from a transition
s ps. T — §
* ps: (@, K (Q,R), Ry >Q
Function ns extracts the next state from a transition
e ns; T — 8§
* ns: (Q, K(Q, R), Ry >R
Function lab extracts a transition’s label
« lab, T -+ S
* lab, (Q, K(Q, R), R) - K(Q, R)
2. 2. 3 The state space of an 1/0-CG
At any time an I/O-CG is in a certain internal state, simply
called state, and given a certain input assignment. One or more
operators may be enabled. If only one operator is enabled the TD
will show only one outgoing arc from that state and we say the
transition i1s a deterministic one. If several operators are enabled
the TD will have multiple arcs coming out of that state and we
say the transition is non-deterministic since the resulting state is
one of a set of possible states. When there are no operators en-
abled the environment has to provide a different input. A state
where no input enables operators is a hung or deadlock state.
| A TD represents all possible behaviors of an 1/0-CG and

can therefore be used as its analysis tool. Knowledge can be ex-
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