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Dan-You Naa
Cruft Leboratory, Harvard University, Cambridge, Massachusetis

(Received August £ 1938)

T has been shown by various authors! that the
number of eigentones in a rectangular cham-
ber with frequencies less than a certain limiting
value » is given by
N=4x1/33 (1)
where 17 is the volume of the chamber and ¢ the
wave velocity which, for sound waves, is 1125
feet per second at room temperature. This value
given by (1) is correct only when the limiting
wave-length is negligibly small compared to the
dimensions of the chamber, as in case of light
waves. When it is applied to problems in acous-
tics, as in the calculations of intensity distribu-
tion, growth and decay of sound energy in a
room, etc., the results are far from satisfactory,
because the wave-length now becomes compa-
rable with the dimensions of the room. Mr. Bolt,
by considering the density of representative
points, arrived at a very satisfactory result, as
shown in his diagrams.? From an alternative
point of view, the following result
4r Vyal‘ 3S¢c 1 3L 17, )
et LE
3c? I. 16V e 8rl" it
may be obtained, in which S is the surface area,
L the sum of the three dimensions, 1" the volume
of the chamber, and ¢ the sound velocity. Al-
though this result seems quite different from that
obtained by Bolt 2
47 1"1»’[ 2v1"+cR}

]

3 2v1'+%rRl]

(where R is the sum of the squares of three areas,
SA+5,2+S5.% and the other symbols have the
same meaning as above), the two forms agree
quite well. The values obtained from Eq. (2)
are plotted as x's in the diagrams given by Bolt.?

%

(3)

* Part of this work was done while the author was in
residence at the University of California at Los Angeles.

t Presented at the November meeting of the Acoustical
Society of America. At the same mecting it was suggested
that in the future, in acoustic terminolopy, the word
“eigentone” should be replaced by the more specific terms
“normal frequency” and “normal mode."”

! 5ee, e.g., Courant and Hilbert, Methode der Mathe-
nialische Phyvsik; NMorse, Vibration and Sound.

* See the preceding paper in this issue of the Journal:
“Frequency Distribution of Eigentones in a Three-
Dimensional Continuum,” by R. H. Bolt.

DERIVATION

(A) The asymptotic formula (1)

Let the dimensions of the rectangular chamber
be L., L,, and L.. If the surfaces of the cham-
ber are all rigid, the sound wave in the chamber
will be given by :

V- (1,¢)$=0 (4)
under the boundary conditions:

d¢,/dx=0at x=0and x=L,, 9¢/dv=0
at y=0and ---;

where ¢ represents the velocity potential, d¢ ‘dx

the particle velocity along x-direction, etc. The

solution will be of the form:

pa.rx Py p.rz
cOs ]

COs
L Ty i
with 4772 = p2n?/L 2+ p2wt/L2+p2n2/L 2,

¢= et cag

where p., p,, and p, are integers or zero. For the
eigentones with frequency less than », one has

V> pE/ L+ b/ L7+ A/ LS (5)

Each set of positive integers (p,, p,, p.) satisfving
the relation (5) will give an eigentone of fre-
quency less than v. Therefore any point having
positive integral cobrdinates in the (p., p,. p.)
space will represent an eigentone and the number
of eigentones having frequencies less than » will
be equal to the number of such representative
points within the first octant of the ellipsoid

P:?,"';sz+Py!,r;Ly2+Px?_ffL¢ =4v"‘/{"’. (6)
It is easy to see that there is, on the average, one
point having integral coérdinates in every unit
volume in space, and the number of such points
within a certain volume is equal to the volume
itsclf. Therefore, the number of eigentones ha-
ing frequency less than » is equal to one-eighth
of the volume enclosed by the ellipsoid (6), or

1dr EL,u)(ZL,:-)(ELay)
8 3( ¢ c c

47 1728

3 ¢

N= (1)
1
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where V=L.L,L,is the volume of the rectangular
chamber.

(B) The correction

When the whole space was divided into eight
octants, all the points on the codrdinate planes
were, effectively, cut into two halves and all the
points on the codrdinate axes were, effectively,
cut into four quarters. So, in Eq. (1) only one-
half of the points on the coérdinate planes and
only one-fourth of the points on the cobrdinate
axes have been counted. The correction will be
the addition of the missing points. Evidently
there is, on the average, one point with integral
cotrdinates in every unit area on the codrdinate
planes. The total number of representative points

- -—~on the planes within the ellipsoid (6) is equal to

the sum of the areas of the first quadrants of the
ellipses

po25 , Pl oy
QLp/0r (Lwfe
that is
][ 2Lyw2L,y 2L,v2L.,» 2L.» 2L,,v] TrnS
-l m T P ey | S
4 c c ¢ ¢ ¢ c 2c

where §=2(L,L,4+L.L,+L.L,) is the total sur-
face area of the chamber. One-half of this number
had been missed. So we have to add another
half, i.e,,

=S /4c? (N

to the value given by Eq. (1). As for the points
on the axes, one-fourth were counted in Eq. (1)
and another half in Eq. (7). One-fourth of the
points are still uncounted. It is easily seen that
the number of points on the axes is equal to the
sum of lengths of the three semi-axes of the
ellipsoid (6), i.e.,

2L.v/c+2L,v/e+2L v/c=2Lv/c,

where L= (L.,+L,+L.) is the sum of three di-
mensions of the chamber; and one-fourth of this
number is

Ly, 2c. (8)

Therefore, the total number of representative
points, those within the positive octant of the
ellipsoid, (6), or the number of eigentones of
frequencies less than » is given{by

DAH-YOU

MAA

; 47 V»® =S¥ Ly

Nes——o

3 42 2¢
47 1° 3S5¢ 1 33L& :
= -I:l-i } —]- (2)
3c* 16177y 8xl1”

Or in terms of wave-length, the number of eigen-
tones having wave-lengths greater than X\ is

171 3SN 3LAN
=——[1 ] (9)
3n 16V 8a1’
Discussios

It will be seen that the correction terms depend
only on the ratio of wave-length to the dimension
of the chamber. In all practical cases, the second
correction term is always very much smaller than
one, except for the first few eigentones. For
example, in a room 10'X 15 X30" (discussed
by Bolt)

3LX 87 1V=0.19 at 100 cycles per second
and

So, in general, it is negligible. But the first
correction term must be considered throughout
most of the audiofrequency range. For example,
in the same room, 10" X 15" X30’,

35N /161"=1.13 at 100 c.p.s.
0.38 at 300 c.p.s.

.04 at 3000 c.p.s.

0.02 at 300 cyvcles per second.

and

Since the mean free path of sound waves in the
room is given by
A=4T17/5,
the first correction term may also be put in the

form 37,44, and Eq. (2) will become

N=(3xT7/30) 14+ 3040 4+303 /82171 (10)

From Eq. (2) many other useful relations can
be derived ; the following are a few examples:

(I) The number of eigentones having fre-
quencies between r and v46v is

41" S
SN =—[(r481)* =1 J+—[ v+ 89)*—»*]
33 4t

L
o Lo~

“
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or

4r 1t
aN'= (1 S
C3

3¢ 1_Ie¢ 3
Lu by,
817 v &l ?

4z Se 1 Eral
-+ (1 t -*)(51'2 } évd,
e 1617 » 3¢?

(1

For very small values of v, i.e., when §v<», the
higher order terms of év may be neglected, and
we have

47 1®
oN= 5 (I+

[

AYAR

81" v

Le* 1
+ —)év. (12)
Bxr 17 »?

The first correction term is just

A/24.

In the room 10’15 X30', A=10". Except when
A<20', or ¥ 56 c.p.s., the old form

SN =(4r 17 /%) vor

will not be a good approximation. The second
correction is still very small except when the fre-
quency is very low,

(IT) 'If the walls of the chamber are not totally
reflective, there will be damping for any sound
wave in the chamber and the above derivation
will not be exact because the relation (5) is only
an approximation. But when the absorption of
the walls is small, no further correction will be
required.

If, in such a room, a source of strength
Qoc~7e! is turned on, the final average energy
density will be, according to Morse,!

4»062002 O',;i’,,e (S}

W= 2
12 o) (Qweka/w)?+ (0 —w,? @)

(13)

where p is the density of air, k, is the damping
factor for the nth eigentone w,, S is the position
of source,

P2 AN

Py Pz

L, &, s)=cos

€os COos

z ] z

and ¢,=1, 3, 1, according to whether none, one,
or two of the p's are zero. If v is high enough so
that the eigentones around it are very close to
one another, the average energy density will be

237

Lt 1
4 —') (19)
8r 174t

ron“vz(l Sc 2
T 4vE 81 »

by following Morse's method.

(III) The present result (2) is readily appli-
cable to chambers of other shapes. It is suggested
that when the formula is applied to a chamber of
conventional type, 1" and S will stili be taken as
the total volume and surface area, respectively,
and L will be the sum of the height and one-half
of the perimeter of the chamber.

(IV) In the above derivation, no consideration
has been given to the eigentone (0,0,0) which, in
general, is not counted. Effectively, one-eighth
of the eigentone (0,0,0) has been counted in the
first term of N, three-eighths in the second and
three-eighths in the third. If in the counting of
the eigentones, the mode (0,0,0), which is not
vibratory at all, is excluded, the number at-
tributed by it, i.e.,

1.3 3 _%
i+Hi+i=4,

should be subtracted from the value of N ob-
tained above and Eq. (2) will become

4 1709 38¢1 3L&) 7
N= [1 e —]--
3 1677 » 8x1742 8
or
47178 3S¢1 3L21 218 1
N= [1+——— —+ -——:I (13)
33 16177 v 8x1" ¥ 3271

The value of 6N will be still given by Eq. (11)
or (12). When the value of N is much larger than
one, the last correction may be neglected. But if
NN is not so large, all the correction terms should
be used.

(V) From the solution

Pa P Por
X COS TEor cos

Loy Ly L,

=%t cos

i

of the wave equation, it is evident that (2L./p.),
(2L,/py), (2L./p,) are the “components’ of the
wave-length along the axes (here the ‘compo-
nent’” of a wave-length along a certain direction
means the line segment along that direction cut
by two successive wave fronts at a wave-length
apart), hence the direction cosines of the wave
normal of this particular eigentone are equal to,
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but may differ in signs from Therefore
X A A 47173 St 2Ly
) ) Ne= (1 —cos 9)+ 6+-—
2L./p: 2L,/py 2L./p. (4
or 6
g———%1). (17
el L Re e Rd e +(§m )
2L, 2L "2L, 2L, 2L,

the number, Ny, of the eigentones with frequen-
. des less than » and with wave normals making
angles less than @ with the x axis will be the
rumber of representative points in the p space
within the first octant of the ellipsoid (6) and
also within the conical surface

e/ [+ HE) -

L,

Without the correction for the pomts on the co-
érdinate planes and the axes, this number may
be found by integration as

(47 173/36%) (1 —cos 8).

By the same method as before, the correction
for the points on the coordinate planes is

A e
S'szLir-l'L:Lh
for those on the p, axis

2L.v/c

ile)

where

and for the origin

2cos0—0/2x—1.

In general, the last term is neglected. For the
eigentones in the directions between 6 and 64686
the number is

4r17? 1
6Na=[ = sin 04 — 1 sin 8——]66. (18)

¢ ct 27

Syt

If only the first term is taken, or what amounts
to the same thing, if the eigentone with wave
normal parallel to any of the walls be given a
weight § and the eigentone with wave normal
perpendicular to any of them be given a weight
1 Eq. (17) will give

No= (47 17/3c%)(1 —cos 8). (19)

This suggests a random distribution of the eigen-
tones so far as the direction is concerned. Thus
the usual way of assuming diffused waves in a
room is justified provided the frequency is so high
that the secondary terms are negligible or par-
ticular weights are given to the waves parallel
to the walls or the edges, according to the above
manner. In such a case the number of eigentones
with frequencies between v and v»+ér and in
direction between 6 and 6+4-8f will be given by

8N = (47 '¥2/c?) sin 0 dv 80. (20)

Bolt's diagrams with x's
computed from Eq (2) of
the present paper

Distribution of cigentones
Insroom 107 x 15’ x30'
140 “N gﬂp'
72
w 120 4y s[2V,+CR’
z N =5 =
E 100+ I Wo+ TR
) N . Computed from
= 80
& c[(BY (2. . (%
& =3 \z7) *\) &
o 60 = ¥ "
[+4]
m
: -
=]
z
20 [
(1] 1 i
()} 40 80 120 160
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Analysis of Sound Decay in Rectangular Rooms*

F. V. Huxr, L. L. BEraszr axn 1L Y. Maa
Cruft Laboratory, Harvard Universify, Cambridge, Massachusetls

{Received June 21, 1939)

Sound decay in a rectangular room, each wall of which
is uniform, is analyzed in terms of the damping of normal
modes of aerial vibration, as influenced by the acoustical
impedance of the boundary surfaces. From two to seven
decay terms may be required in the complete decay equa-
tion under different circumstances, each term representing
a group of the excited modes of vibration having common
properties. The analysis is given in terms of r.m.s, pressure
measured for specified locations of source and receiver and

includes explicitly the relative dimensions of the room.
The results of the mathematical analysis are presented in
form 1o aliow determination of the complex wall impedance
from consideration of the initial and final slopes of the
sound decay curve, and conversely, Experimental decay
curves confirm both the detailed predictions of the theory
and the sufficiency of the wall impedance as a unigue
characterization of the influence of the wall on the behavior
of sound in the room.

INTRODUCTION

HIS paper presents a new analysis of re-

verberation which enables the complete
decay curve to be precalculated from a knowledge
of the room dimensions and a single invariant
property of the wall surfaces. The theory is at
present restricted, by lack of an applicable dif-
fraction analysis, to the case in which each of
the six bounding surfaces is uniform. The theory
is also restricted to consider only rectangular
rooms, although its extension to other simple
shapes is straightforward. To a considerable de-
gree the theory represents the implementation of
the procedure described in a discussion of the
general problem in a previous paper! and in the
introductory remarks for this symposium. Briefly
stated, the root-mean-square sound pressure at
the measuring microphone is, at every instant
during decay, considered as the summation of
the contributions from each excited normal mode
of vibration. In order to clarify the logical basis
for the complete solution, we may recognize four
subsidiary problems which can be discussed
independently. These are: :

I. Subdivision of the large number of excited
modes of vibration into a manageable number of
subgroups having common properties:

I1. Computation of the number of modes of
vibration in each subgroup;

1. Calculation of the weighting factor by

* Presented at the
Acoustical Society of
15, 1939,

tF. V. Hunt, |. Acous. Soc. Am. 10, 216 (1939),

Tenth Anniversary Meeting of the
America, held in New York, May

Si

which each mode of vibration enters into the
final summation:

IV. Analysis of the decay rate for each mode
of vibration in a subgroup in terms of some
invariant property of the wall surfaces and the
Toom geometry.,

After consideration of these problems the
complete decay equation can be assembled. It
will contain one decay term for each subgroup
(from 1) and each term will contain the number
of modes of vibration (from I1), weighting factors
(from 111}, and an exponential decay factor
(from IV7).

I. Surpivisiox oF Excitep MobpEs
OF VIBRATION

Subdivision of the excited modes of vibration
into groups is, basically, an analysis of the state
of diffusion of sound energy in the room. Such
an analysis can be made conveniently by ut ilizing
the concept of frequency space,® an example of
which is shown in Fig. 1. This diagram? repre-
sents the positive octant of a space lattice whose
intersection points represent the normal fre-
quencies of our reverberation chamber! The
length of a line joining the origin and any one of
the lattice intersection points is equal to one of
the normal or ‘“‘proper" frequencies of the

P M. Morse, Vibrations and Sound (McGraw-Hill,
New York, 1936), Chapter V111,

*We are indebted to Mr. J. A. Pierce for preparing this
drawing.

¢ This is the "‘constant temperature room" referred to in
the Collected Papers of W. C. Sabine. The shape of the
enclosure has recently been altered to that of a rectangular
parallelepiped (20°% 14’ x8") by elosing off the vaulied
ceiling with a 6" concrete slab,
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FiG. 1. Normal frequency diagram, drawn to scale for 207X
are omitted to av

chamber; the angles which this line makes with
the three principal axes are the angles between
the three adjacent walls of the chamber and the
direction of propagation of the plane waves
constituting the standing wave, or normal mode
of vibration, in question. Inasmuch as every
condition of excitation of the chamber can be
svnthesized by combining the normal modes of
vibration in proper amplitude and phase, it
follows that the normal frequency diagram is
sufficient for a complete study of sound diffusion
in enclosed spaces. In passing, it may be re-
marked that the use of nonparallel or irregular
boundaries does not impair the validity of the
preceding statement, the principal effect of the

14' % 8’ reverberation chamber. Most of the vertlical lines
oid confusion.

irregularity being a distortion of the simple
distribution of normal frequency points.

When a sound source having components at
all frequencies within a certain band is placed in
the chamber, it will excite all of those modes of
vibration characterized by points in frequency
space lving between two spherical shells having
radii corresponding to the frequency band limits.
This is illustrated in Fig. 1. It is immediately
apparent that we do not have the uniform dis-
tribution-in-angle assumed in the ¢lassical theory.
There is, instead, a step-wise distribution, some
angles of incidence not being represented at all.
For a given mid-band frequency the angular
distribution becomes more uniform as the excit-
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ing bund-width is increased, but there is always
a discontinuity at zero and near ninety degrees,
The operation of dividing the Jurge number of
excited modes into a few groups implies the
assumption that the members of the groups so
formed will have commaon properties. The va-
lidity of this assumption will be established by
stubsequent computation of the decay constants
for individual modes of vibration. We anticipate
these results in proposing the following typical
cases of appropriate subdivision. Two general
distributions of absorbing material are con-
sidered, the first of which is designated as:

Case A. High absorption at one wall, low ab-
sorption at remaining walls

For the simplest treatment of this case the
excited modes can be divided into two groups.
(One group contains the modes of vibration com-
prising waves at grazing incidence on the ab-
sorbing wall, while the other group includes all
the modes of vibration at nongrazing incidence.®
Fig. 1 is directly applicable if the absorbing
material is placed on the wall perpendicular to
the vertical axis of the drawing, corresponding to
floor or ceiling coverage in our chamber. The
first group then comprises the normal frequency
points lying on the lowest (zero order) annular
Liver, and the other group contains all the rest.
If one wall is very highly absorbing it may be
desirable to use three groups, the first comprising
the modes of vibration at grazing incidence as
before, the second comprising the modes of
vibration represented by points lying on the
second annular layer (first-order modes having
one nodal surface paraliel to the highly absorbing
wall) and the third including all the remaining
modes of vibration. A slight further improvement
in accuracy may be made by separating out from
the zero layer the two small groups representing
wave directions grazing at both the highly ab-
sorbing wall and one of the others. This mukes
a total of five groups which are, in order of

S Throughout this paper the term Vgrazing incidence”
will be wmeel 1o refer to the modes of vibration characterizel
b norial fregquency points ling in the lowest laver of the
norial frequency diagram, even though the diagram nus
Lo =0 distorted In boundars absorprion Gsee below ) that
the Uprazing angh ™ is signiticantly preater than vero
degrees
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increasing  importance, the two  representing
prazing incidence on two wall pairs, one repre-
senting nearly grazing incidence on the sample,
one representing prazing incidence on the sample,
and the dominant group representing nongrizing
incidence on the sample. Further subdivision
could be made if necessary but the added com-
plexity is seldom justified, and for most practical
purposes the last two groups named are sufficient.

Case B. Similar absorption on all walls

The most common example of the acoustical
situation in which all walls have comparable
absorption is the untreated room or bare re-
verberation chamber, although some broadcast-
ing studios and “‘dead” rooms are also typical.
If the absorption is moderately low only four
subgroups of the excited modes will need to he
formed. Referring again to Fig. 1, three groups
will contain the normal frequency points lying
on the coordinate planes and representing grazing
incidence on the three walls, respectively. The
fourth group will contain the remaining points
representing nongrazing incidence on all walls,
An improvement in accuracy can he made by
forming three additional groups containing the
puints on the coordinate axes represeiting the
waves which are at grazing incidence on two
witlls. If the absorption is very high, or if still
further improvement in accuracy is required,
three more groups may be formed to include the
first-order points lying on planes parallel to the
coordinate planes and representing nearly grazing
incidence on the three walls. Divisions into four
or ten groups for this case correspond in ap-
proximation to the use of two or five groups,
respectively, for Case A, the added complexity
arising from the more complicated distribution of
absorbing material.

11. CoMPUTATION OF THE NUMBER oF MODES
or VieraTioN IN lacn Group

In computing the number of modes of vibra-
tion in each group we follow the same procedure
outlined in a previous paper.® Thus for Case A
considered above we may write, for the number

e Y. Maa, J. Acous. Suc Am. 10, 235 (1W39),
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of normal frequency points on the zero order
annular laver,

.\-u: == Z'Jrf_\ff,‘.t’,_-'{‘:
— (A L)Af e 21, A e+ 21 Af fe, (1)

in which ¢ is the velocity of sound, I, 1,, and I,
are the three dimensions of the chamber cor-
responding 1o the 8', 14', and 20’ axes, respec-
tively, in Fig. 1, fis the mid-band frequency, and
Af is the band width of the exciting sound. The
second, third, and fourth terms of (1) may be
combined but, as written, the second term cor-
rects the first term to make the sum of the first
two yield the correct count of the number of
normal frequency points lying on the ground
plane exclusive of those on the coordinate axes.
The last two terms add the points lying on the
axes, or, for the five-group division, they count
the two minor groups representing the modes
whose wave directions are grazing at both the
absorbing wall and one other wall.

The normal frequency count for the first
annular layer above the ¥, z plane is given by

1+l c\
Nip=2nfAfll. cH——fA fz_(_)] - (D
c 2,

More generally, we may include (1) and (2)
in the following expression:

1+, AN
.\1“; = ZFfAfI,-’;.."I(q_*" _fA,{ﬁ - (5) } ’ (3)
E c Ed

where #, is the ordinal number designating the
annular layer for which N, is computed. #, may
also be identified as one of the three numbers
\#:, 1y, #.) which designate a particular mode of
vibration and which count, for the stationary
wave system, the number of nodal surfaces per-
pendicular to the x, ¥, and z axes, respectively.
The population of the group of modes whose
wave directions are neither grazing nor “nearly
grazing” at the absorbing wall may be computed
by summing Eq. (3) from #,=2 to its maximum
value, given by the first integer less than
(2f+Af); ‘c. If the band width Af is equal to or
greater than the frequency space unit ¢, 2/, the
number A, for the top layer will not be given
correctly by (3), but must be determined by a
separate computation (see, for example, N; of
Fig. 1).
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In considering Case B the preceding equations
can be used with slight modifications. Thus the
population of the three grazing incidence groups
for the four-group division may be counted by
maodifving Eq. (1) to

No=2nfafll./ = (I,—1,)Af /¢ (4)

and advancing the subscripts x, v, z evelically to
generate the three equations. In this expression
the normal frequency points lying on the z axis
are counted as on the z, y plane, those on the x
axis as on the x, z plane, and those on the v axis
as on the y, x plane. In the more accurate seven-
group division the points lying on the axes are
counted in three separate expressions formed by
cyclic advance of the subscripts in

Nug, =2LAf/c. (5)

When this is used the sign before I, in the second
term of (4) should be reversed, in order to exclude
the points counted by (5), and the modified
equation designated as (4a) for reference. The
population of the remaining nongrazing group
of either the four- or seven-group division is
determined, as before, by the summation of Eq.
(3), except that the lower limit of #, is to be taken
as 1 and the algebraic sign of the second term is
to be reversed to exclude the points already
counted in (4) and (5). Alternatively, the total
count for the nongrazing group may be com-
puted directly from the expression

4rVeAr  Sc Le
fpm— | f——— 4 —]. (6)
¢ 8Vf 8rl'f?

where 17is the volume, Sis the total area, and L
is the sum of the lengths of the three sides of
the chamber.

In general, the ratio of the number of modes of
vibration at grazing incidence to the number of
modes of vibration not at grazing incidence in-
creases almost linearly with the ratio of the wave-
length to the smallest dimension of the room.
It follows that, in ordinary rooms, the relative
number of modes which involve grazing incidence
will be small in the middle frequency range.
However, the importance of these is enhanced
by the fact that they usually decay in amplitude
slowly and ultimately dominate in the residual
sound. For example, in a room or ofiice having
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FiG. 2. Experimental confirmation of the predictad
difierences betwern two sound decay curves measured
under different conditions of microphone placement.

a 9 ceiling, all stativnary wave systems for
frequencies below 125 cycles represent grazing
incidence on the ceiling, and the relative number
of such grazing modes of vibration is signiticant
throughout the middle audiofrequency range.

1. WEIGHTING FACTORS

The weighting factor applying to each mode of
vibration is determined by consideration of the
type of electrical summation provided by the
measuring apparatus, the location of the measur-
ing microphone in the enclosure, and the steady-
stitte pressure amplitude to which each mode of
vibration is excited. We assume that our measur-
ing apparatus is responsive to the sum of the
squires of the amplitudes of all pressure com-
ponents observable at the microphone. This
assumption makes it possible 1o ignore the dis-
tribution of time phase among the various com-
ponents and can be satisfactorily approximated
in practice by using a diode rectifier at “small-
signal” levels. It has been shown' ? that the
steady-state pressure amplitude at a point x, y, z
arising from excitation by a point source of
angular frequency o located at oy, Yo Ty in
given by

wa,ulx, ¥, 2. (xy, Yo, 20)
P =constant - - e - S
2w,k tjlw? = w,t k)
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in which w, is 27 times the normal frequency of
the nth mode of vibration. If we assume that all
frequencies within a band are present in the
exeiting source the square of the pressure ampli-
tude of each excited mode will take on the
approximate resonance value given by

P& =constant o, (x, ¥, 2)¥.2{x0, yo, 20),/k25 (8)

where k., is identified as the pressure decay
constant (nepers per second), ¢, as a normaliza-
tion constant discussed below, and ¢, as the
characteristic function describing the space dis-
tribution of pressure amplitude for the nth mode
of vibration. We may now introduce the experi-
mental circumstances involving placement of
source and microphone. If either is located in a
corner of the chamber the corresponding ¢, func-
tion has the approximate value unity, Alter-
natively if either source or microphone is moved
about in the chamber (or if several microphone
outputs are commutated) to give a space average
we must also average the corresponding y.
function throughout the volume of the room.

However, the normalization constant e, is
defined in terms of the space average of ¢! so
that Eq. (8) may readily be simplified to yield
the following weighting factors: For both source
and microphone fixed in corners of the chambwer,
use

Pl xa2/kE; (9a)

for either source or microphone fixed in a corner
and the other moved about to occupy an “average
position,"" use

n‘ o« O'M/'k.‘l:

(9L)

for both source and microphone moved about to

occupy "average positions,” use

P /kt, (9¢)

The explicit evaluation of ¢, leads approxi-
mately to one of the three values 1, }, or } ac-
cording 10 whether the normal mode in question
has a wave direction at grazing incidence on
none, one, or two wall-pairs. The approximation
involved here, in (8), and in evaluating ¢, as
unity for a corner location, is that £,2 shall be
negligible with respect to w2 This condition is
usually satisfied in practical cases.

Lixperimental confirmation of these weighting
factors is exhibited, in Fig. 2, by two decay
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curves calculated by the five-group analysis
(Case A) and differing only in the use of Eqgs.
(9a) and (9D) to correspond to the two conditions
of microphone placement. A previous suggestion!
indicating the suitability of a corner location for
the microphone is thus supported and the varia-
tion of the results from those obtained by con-
ventional techniques is rendered predictable.

IV, CompuTaTioN OF DEcAY CONSTANTS FOR
INpivipuaL Mobes ofF VIBRATION

The decay constant k. is defined as the ex-
ponent in the simple expression for the decay of
pressure amplitude, p, =P, exp (—k.t), and it is
now our object to compute this constant in
terms of room geometry and some invariant
property of the wall surfaces. Two general
procedures are available for different, but over-
lapping, ranges of absorption, and will be desig-
nated as the “free wave theory' and the “stand-
ing wave theory.” The free wave theory is
especially applicable for low absorption materials
distributed as in Case B and, since it represents
a logical extension of the classical treatment of
reverberation, it will be discussed first.

Free wave theory

When a free progressive plane wave strikes an
absorbing wall at the incident angle 8 the
pressure reflection coefficient is given by

Pret 'Pinc=(Z cos §—pc) (Z cos 8+pc), (10)

in which pr is the specific “radiation resistance”
of the medium and Z is the specific normal
impedance of the wall surface (i.e., Z=ratio of
pressure to normal component of particle ve-
locity at the wall surface). In evaluating an
absorption coefficient from (10) Z is usually
restricted to real values, but we may use the
reflection coefficient itself for the complex values
of wall impedance defined in polar form by
Z pe=z=+e"® Let us now direct our attention
to some particular mode of vibration having a
wave direction making angles 6., 8,, and 6. with
the three axes, and hence having these angles of
incidence on the walls perpendicular to the cor-
responding axes (designated as x, ¥, and = walls).
We may deduce that the waves composing the
stationary system will traverse the path length
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I, ‘cos 6, between successive reflections at the x

walls, the free path I, ‘cos 6, between reflections

at the v walls, and so on. It follows that f seconds

after sound decay commences the x walls will

account for a pressure amplitude reduction factor
ef rus g

given by
iy et
[ w

and that similar reduction factors will be con-
tributed by the other walls. The following ap-
proximate identity is then established by ex-
pansions in power series, the coefficients of which
coincide through the term in z277;

|
The important conclusion may be drawn that
every mode of vibration satisfving z cos 6> 1 will
have the same decay rate as that assigned to a mode
whose waves are normally incident on the wall,
provided z itself is not too small. In practice the
effect of the restriction z cos §>1 is to exclude
only those modes representing grazing, or nearly
grazing, incidence at the wall, and it is this
feature which provides the basis for the grouping
of normal modes described above in Section 1,
Case B. Assembling the pressure reduction fac-
tors contributed by the three walls we have, for
the nth nongrazing mode of vibration,

D) /. (0) = Ryrtiz. R rtitu. R etils

Zcosf.—1

zZ cosf.+1

2g—1

7g+1

z—1
=——=R, when 2¢>1.
z+1

zg—1
zg+1

(12)

< (S:log R
=exp —(J5; log R,
-4

+5, log R,+S5, log R.), (13)

where S,=2,1, ---, V=1L, The similarity
between (13) and the classical reverberation
formula is striking. It should be emphasized,
however, that the normal incidence reflection
coefficient is nof to be used in connection with a
mean {ree path, but with I,, the free path associ-
ated with a normally incident wave. The actual
change in free path occurring as the direction of
the wave is altered is just compensated by the
change in reflection coefficient with angle of
incidence (except near grazing incidence).
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Before identifying the exponent in (13) as a
conventional decay constant it is necessary 1o
resolve the apparent dilemma presented in the
complex value assumed by the reflection co-
efficient when the wall impedance is complex.
The dilemma can be resolved by writing for
R, «++in (13) its absclute value, and imposing a
limitation on the applicability of the free wave
theory. Replacement of the complex R by its
magnitude rejects, in effect, the information
concerning phase shift on reflection at the wall,
and hence ignores any shift of the pressure loop
of the standing wave system with respect to the
wall. Application of the free wave theory should.
therefore, be restricted to cases in which this
displacement of the pressure loop is small.
Morse? shows a series of pressure distribution
curves from which one may infer that the restric-
tion | Z pei 2 15 is sufficient for this purpose. The
same restriction is also sufficient to assure the
identity expressed in {12). We may now rewrite
(13) as follows:

P p 0 =exp (= k.

- 5::,
=e.\'p—-—[—+
1 LI

B ¥

ly

where we have used the abbreviation

(We have suggested that this quantity §, defined
through (14) in terms of &, be called the damping
coefficient, reserving for k the term decay constant
in analogy with the aftenuation constant and
transfer constant of network theory. The decay
rafe may then designate k expressed in db, 'sec.)

The modes of vibration at grazing incidence
excluded by the restriction on Eq. (12) must now
I-e considered. The erroneous prediction from
Eq. (10} for §=907 is avoided by borrowing an
evaluation of the ratio of grazing incidence to
normal incidence damping coefficients from the
standing wave analysis described below. Assum-
ing that these results are available, we mav
define p,=du. 8., and introduce the factor x in
the appropriate terms of (14) to form the decay

1N AL Morse, . Acous. Soc. Am. 11, 55 (1939). We are
indebted 10 Professor Morse for the opportunity to examine
and discuss this manuscript in advance of publication,
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FiG. 3. Comparison between an experimental decay
curve and a caleulated curve representing the sum af
seven decay components. e, is taken as 0.0006 and the
seven components are numbered as they appear in the
following complete decay cquation:

Pz_ ﬁl:!=(]_53"{;—(.»..!7+(;'2{‘|lr-r.‘u.ws+n_{]5“?(.—r w2
+0.0828¢ 1040017201 0ATH0 010501 ¥
0004330 7 e

The straight dashed line i= shown for compari-on to cxhibit
the curvatuge.

constant for those modes involving grazing
incidence at either one or two wall-pairs.

We may now, at last, assemble 1the complete
equation of decay. Adopting the seven-group
division from 1, Case B, we select group popula-
tions from (4a), (5), and (6), weighting factors
from (9b) and decay constants from (141, 10
vield finally

¥

N.(1)
P p20) e
b2

n

exp (—2k.1)

No:(172)
S ... W
Fooge 5{ ¢ a
bo—(1—u,)— —]
| I 4
r O
Xexp 2 ~kn+(1—p,n——]f
| !
Ly Non(1 1) )
T W 2 - ra[ !,\ éy "
(T —]
| 41, ,
[ € &, ¢ b,
Xexp 2| =k, +(1—p)- —+(1=p,)- —]r.
5 41, 41103

The summation symbols indicate that three
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Fis, 4. Calculated and experimental sound decay curves
for 1wo frequencies. The values of a, and u are computed
from the impedance of the material.

terms are to be formed by cyclic advance of the
subscripts. The expression can be normalized by
dividing through by the sum of the seven co-
efticients of the exponentials, whence the pressure
ratio reduces properly to unity at =0 and the
complete decay may be calculated. In Fig. 3 this
analysis is applied to precalculate the decay
curve for our bare reverberation chamber. The
value of the normal incidence absorption,
a,=1—|R|? is determined by successive trials
and the factor uis taken as 0.5 from the analysis
below. Although the necessity of successive trials
to determine «, appears cumbersome the quan-
tity is principally determined by the initial slope
and two trials are usually sufficient to fix a,
within one percent of its value. As an alternative
procedure the reflection factors, and hence the
damping coefficients, may be computed directly
if the complex impedance of the wall surfaces is
known, This is illustrated in Fig. 4 in which the
calculation of two decay curves is based on values
of a, computed from the impedance of the
sample. The impedance and the ratio u were
actually deduced from the reverberation data by
a method described below, but any other scheme
(e.g., model chamber measurements') vielding
values for a, and p would be equally suitable.
Fig. 5 presents an example of this analysis applied
to a decay curve obtained in another reverbera-
tion chamber. The agreement hetween calcula-
tion and experiment is especially gratifving since
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this experimental decay curve was published® in
1936 as a typical example for which *. . . this
curvature should be amenable to appropriate

mathematical analysis."
Standing wave theory

The conception and properties of the normal
modes of aerial vibration in a room have been
used freely in the preceding sections of this
paper. We shall now give a brief summary of
the mathematical basis for these properties and
describe a method of computing the damping
coefficients from the boundary conditions.

The initial assumption is the validity of the
small-signal wave equation

AV =a*p A, (16)

Choosing the origin of coordinates at a corner
of the room, we may verify, by direct substitu-
tion, that

x
p=P, cosh [{k; ——jw,)~+¢n]
¢
s i
X cosh [(_k, -—Jn-'y}—+\3’v-|
e .

z
X cosh Ii(kz-—jw:)*+¢r,:| exp (Juw,—k )t (17)
¢

will be a solution of the wave equation
and will describe a normal mode of vibration
provided the “allowed,” or normal, angular fre-
quency w, and the decay constant £, are related
to the other £'s and «'s by

(Jwn—k.)? = (ke —jwo) '+ (b, — ju,)?
+ (k. —jw.)?. (18)

and provided the boundary conditions are satis-
fied. The real and imaginary parts of (18) provide
the following relations

wri—ktr=wltwltet—= kAR RS (19)
kn=koe/wo ke, e b, .. (20)

We observe that if .,=k,=F.=0, then b, =0, the

wave motion is undamped, and the “undamped

normal frequency” is given by
W=t et 4wl

*F. V. Hunt, J. Acous, Soc. Am. 8, 34 (19361,

(21)

12
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This quadrati¢ equation is interpreted geometri-
cally by the normal frequency diagram and we
may note that (21) is only slightly affected if

Eo#0, (k24k214E)<w,l, (22)

As mentioned before, this condition is nearly
alwavs satisfied in practice and we conclude that
the eflect of boundary absorption is merely. to
distort the normal frequency diagram without
destroving its significance or its general con-
figuration.

A very important additive property of this
solution may now be recognized. The three
terms comprising k, through Eq. (20) are each
functions of the absorption at one wall-pair alone,

“except for the factor w,. But, if the approxima-
tion condition (22) is satisfied, w. 15 not appre-
ciably affected by any of the k's and it follows
that the contribution lo the total decay conslan!
arising from absorption al one wall-pair is inde-
pendent of the absorption at the remaining walls.
The result has already been used in writing the
defining Eq. (14) with the tacit implication that
5, 8,. and &, are independent, and we may pro-
ceed, without loss of generality, to consider in
detail the case in which absorption is confined
to one wall-pair.

Assuming that absorption occurs only at the
x walls (k,=k,=0) the boundary conditions are
introduced by computing the x component of
particle velocity, u, from (17) and forming the
ratio {exact),

k,—jwn

(P 'w)e=pr——

x_JWa-

coth [(k, - jw,)f-hb.]. (23)
e

Substituting two complex x-wall impedances for
(p )1, provides four equations to determine
k., w, and the real and imaginary parts of V..
The effects of absorption at the two opposite
walls are not, unfortunately, additive when both
walls are highly absorbing and similar. Since
Morse’ has discussed these interaction phenom-
ena in some detail we shall confine the re-
mainder of this discussion to the case in which
only one wall is absorbing (i.e., ¥,=0), remark-
ing, however, that the effect of such slight ab-
sorption as that of an opposite untreated surface
can be Added as a correction to the damping
coefficient without significant error.

The transcendental equation which must be
solved is, therefore,

(k:—jw.)y exp j¢ 3

=(kn—jw,) coth [(k,—jw )l ¢]. (24)

It is at this point that the present analysis be-
comes restricted to the case of uniform coverage
of each wall surface since it is implicitly assumed,
in writing (24), that the wall impedance Z
= peye’® is not a function of ¥ or z. It is also as-
sumed in (24) that the normal impedance of the
wall is independent of the angle of incidence;
that is, the ratio of pressure 1o the normal com-
ponent of particle velocity at the wall is assumed
to be independent of the direction of the particle
velocity in the incident wave. The plausibility of
this assumption has been discussed by Monna®
and by Morse.”
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analysis and in good agreement with experimental observa-
tions reported in 1936,

In order to provide a basis for an experimental
study of the dependence of Z on the angle of
incidence a solution of (24) must be obtained
without invoking the approximation k,*<w,?, so .
that independent measures of %, and w, for a
single mode of vibration may vield both magni-
tude and phase angle of the wall impedance.
Such a solution can be obtained from (24) and
(18) by a tedious process of power series manipu-
lations. The results for modes of vibration at
grazing and nongrazing incidence are, for
wl, ye=1:

*A. F. Monna, Physica 5, 129 (1938),
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