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Chapter 1 (1) Crystal Structure

1. Tetrahedral angles. The angles between the tetrahedral bonds of diamond are the
same as the angles between the body diagonals of a cube, as in Fig. 12. Use elemen-
tary vector analysis to find the value of the angle.

2. Indices of planes. Consider the planes with indices (100) and (001); the lattice is fcc,
and the indices refer to the conventional cubic cell. What are the indices of these
planes when referred to the primitive axes of Fig. 137

3. Hcp structure. Show that the c/a ratio for an ideal hexagonal close-packed structure
is (1'2 = 1.633. If c/a is significantly larger than this value, the crystal structure ma:
he thought of as composed of planes of closely packed atoms, the planes being lepsely
stacked.

Chapter 2(2) Reciprocal Lattice and
- ( Crystal Diffraction )

1. Interplanar separation. Consider a plane hkl in a crystal lattice. (a) Prove that the
reciprocal lattice vector G = ha: + kag + la, is perpendicular to this plane. (b} Prove
that the distance between two adjacent parallel planes of the lattice is d(hkl) =
27/|G| . (c) Show for a simple cubic lattice that d% = a®(h* + K* + I¥) .

2. Hexagonal space lattice. The primitive translation vectors of the hexagonal space
lattice mayv be taken as |
a = (3"2a/2% + (@/2)f ;. ag= —(3F/2R+ (@2)y: m3=ch.

(a) Show that the volume of the primitive cell is (3"*/2)a’c.
(b) Show that the primitive translations of the reciprocal lattice are

b, = (2n/3"2a)% + (2wa)¥ ; b, = —(2w/3"%a)k + (27/a)y ; by = 2mich |

so that the lattice is its own reciprocal, but with a rotation of axes.
(¢) Describe and sketch the first Brillouin zone of the hexagonal space lattice.



3. Volume of Brillouin zone. Show that the volume of the first Brillouin zone is

2m)*V,, where V, is the volume of a crystal primitive cell. Hint: The volume of a
. Brillonin zone is equal (o the volume of the primitive parallelepiped in Fourier
space. Recall the vector identity (¢ xa) x (ax b) = (c-a x b)a .

4. Wid:h of diffraction maximum. We suppose that in a linear crystal there are identical
point scattering centers at every lattice point p,, = ma, where m is an integer. By
analogy with (20) the total scattered radiation amplitude will be proportional to F =
% exp|—ima - Ak]. The sum over M lattice points is

F = 1 — expl-iM(a - AK]
1 — exp[—i(a - Ak)]

bv the use of the series
M-1

S, "=

m=0 1-x

1 —xM

(a) The scattered intensity is proportional to |F|% Show that

sin® {M(a - Ak)
sin® ¥a - Ak)

(b) We know that a diffraction maximum appears when a - Ak = 2wh, where h is an
integer. We change Ak slightly and define € in a - Ak = 27h + € such that € gives the
position of the first zero in sin {M(a - Ak). Show that € = 27/M, so that the width of
the diffraction maximum is proportional to 1/M and can be extremely narrow for
- macroscopic values of M. The same result holds true for a three-dimensional crystal.

F[? = F*5 =

5. Structure factor of diamond. The crystal structure of diamond is described in Chap-
- ter 1. The busis consisty of eight atoms if the cell is taken as the conventional cube.
(a) Find the structure factor S of this basis. (b} Find the zeros of § and show that the
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Figure 19 Meutron diffraction pattern for powdered diamond. (After G. Bacon.)

allowed reflections of the diamond structure satisfy v; + vs + vy=-4n, where all indi-

ces are even and n is any integer, or else all indices are odd (Fig. 19). (Notice that h,

k. | may be written for |, vy, t5 and this is often done.)

Form factor of atomic hydrogen. For the hydrogen atom in its ground state, the
number density is n(r) = (mad) ™" exp(—2+/ap), where ag is the Bohr radius. Show that
the form factor is fi; = 16/(4 + G%ad?.

Diatomi: line. Consider a line of atoms ABAB . . . AB, with an A—B bond length of
ta. The form factors are f,, fp lor atoms A, B, respectively. The incident beam of
x-ravs is perpendicular to the line of atoms. (a) Show that the interference condition is
nA = a cos 6, where 6is the angle between the diffracted beam and the line of atoms.
(b) Show that the intensity of the diffracted beam is proportional to |f, -- fg|* for n
odd, and tn Ify + fxl* for n even. (¢) Explain what happens if f, = f3.



Chapter 3 (3) Crystal Binding

1. Quantum solid. In a quantum solid the dominant repulsive energy is the zero-point
energy of the atoms. Consider 2 crude one-dimensional model of crystalline He* with
each He atom confined to a line segment of length L. In the ground state the wave
function within each segment is taken as a half wavelength of a free particle. Find the
zero-point kinetic energy per particle.

2. Cohesive energy of bec and fec neon. Using the Lennard-Jones potential, calculate
the ratio of the cohesive energies of neon in the bee and fee structures. The lattice
sums for the bee structures are:

Doyt =9.11418 ; D pe® = 12.2533 .
J J

3. Solid molecular hydrogen. For H; one finds from measurements on the gas that the
Lennard-Jones parameters are € = 50 X 107'% grg and o = 2.96 A. Find the cohe-
sive energy in k] per mole of i; do the calculation for an fce structure. Treat each Hy

molecule as a sphere. The observed value of the cohesive energy is 0.751 kl/mol,
much less than we calculated, so that quantum corrections must be very important.

4. Possibility of ionic crystals RYR™. Imagine a crystal that exploits for binding the
coulomb attraction of the positive and negative ions of the same atom or molecule R.
This is b=lieved tc occur with certain organic molecules, but it is not found when R
is a single atom. Use the data in Tables 5 and 6 to evaluate the stability of such a form
of Na.in the NaCl structure relative to normal metallic sodium. Evaluate the energy
at the observed interatomic distance in metallic sodium, and use 0.78 eV as the
electron affinity of Na.

5. Linear ionic crystal. Consider a line of 2N ions of alternating charge = ¢ with a
repulsive potential energy A/R" between nearest neighbors. (a) Show that at the
eq’l}ilibrium separation

__Wetlna( 1



(b} Let the crystal be compressed so that Ry— Rq(1 = 8). Show that the work done
in compressing a unit length of the crystal has the leading term 3C8%, where

(n — Hg*In 2
Rﬂ

(CGS) C =

To obtain the results in SI. replace ¢® by ¢*47e,. Note: We should not expect to
obtain this result from the expression for U(R,), but we must use the complete ex-
pression for U(R).

6. Cubic ZnS structure. Using A and p from Table 7 and the Madelung constants given
in the text, caleulate the cohesive cnergy of KClin the cubic ZnS$ structure described
in Chapter 1. Compare with the value caleulated for KClin the NaCl structure.

1. Divalent ionic crystals. Barium oxide has the NaCl structure. Estimate the cohesive
encrgies per molecule of the hyvpothetical eryvstals Ba*O™ and Ba” 0O referred to
separated neutral atoms. The observed nearest-neighbor iniernudlear distance is
Ry, = 2.78 A: the first and second ionization potentials of Ba are 5.19 and 9.96 eV’
and the electron affinities of the first and second electrons added to the ncutral
owgen atom are 1.5 and —9.0 eV, The first electron affinity of the neutral oxvgen
atom is the energy released in the reaction O + ¢ = Q™. The second electron affinity
is the energy released in the reaction O° + e — O~ . Which valence state do you
predict will occur? Assume Ry is the same for both forms, and neglect the repulsive

€nergy.

Chapter 4 (4) Phonons 1. Crystal Vibrations

1. Vibrations of square lattice. We consider transverse vibrations of a planar square
lattice of rows and columns of identical atoms, and let u; ,,, denote the displacement
norimal to the plane of the lattice of the atom in the Ith column and mth row (Fig. 13).
The mass of each atom is M, and C is the force constant for nearest neighbor atoms.
(2} Show that the equation of motion is



M(dEI"’n\/dtz) = C[(“H’l,m + Ul—ym — 2"!!11) + (uf,m-ﬁ-l + Wm—1 Zuﬁh)] .

Figure 13 Square array of lattice constant a. The
displacements considered are normal to the plane
of the lattice.

(b) Assuine solutions of the formn

= w(0) expli(lia + mKa — wi)] |

where a is the spacing between nearest-neighbor atoms. Show that the equation of

motion is satisfied if
| w'M = 2C(2 - cos K.a — cos K} .

This is the dispersion relation for the problein. (c) Show that the region of K space fcr
which independent solutior.s exist may be taken as a square of side 2ar/a. This is the
first Brillouin zone of the square lattice. Sketch w versus K for K = K, with K, =0,
and for K, = K,. (d) For Ka < 1, show that

©= (Casz)l’z(Kf + Kg)lm - (Caz.’M)mK

so that in this limit the vclocity is constant.

. Monatomic linear lattice. Consider r longitudinal wave
u, = u cos(wt — sKa)

which propagates in a monatomic linear lattice of atoms of mass M spacing g, and
nearest-ne.gnbor interaction C.



(a) Show that the total energy of the wave is

E=iM E (du,/dt)z + &C 2 (us ~ un+!)2 s

where s runs over all atoms.
(b} By substitution of u, in this expression, show that the time-average total ene gy
per atom is

IMo?u® + $C1 — cos Ka)u® = iMo?u? |

where in the last step we have used the dispersion relation (9) for this problem.

3. Continuum wave equation. Show that for long wavelengths the equation of motion
(2) reduces to the continuum elastic wave equation

where v is the velocity of sound.

4. Basis of two unlike atoms. For the problem treated by (18) to (26), find the amplitude
ratios w/v for the two branches at K., = #w/a. Show that at this value of K the twn
lattices act as if decoupled; one lattice remains at rest while the other lattice moves.

5. Kohn anomaly. We suppose that the interplanar force constant C, between planes s
and s + p is of the form _
pa ' |
where A and ko are constants and p runs over all integers. Such a form is expected in’
metals. Use this and Eq. (16a) to find an expression for «* and also for d&%aK. Prove
that dw?/3K is infinite when K = ko. Thus a plot of w? versus K or of @ versus K has a
vertical tangent at ko: there is a kink at kg in the phonon dispersion relation w(K).

C,=A

6. Diatomic chain. Consider the normal modes of a linear chan in which the force
constants between nearest-neighbor atoms are alternately C and 10C. Let the masses
be equal, and let the nearzst-neighbor separation be a/2. Find «{K) at K =0 and

K = @la. Sketch in the dispersion relation by eye. This problem simulates a crystal of
diatomic molecules such as H,.



7. Atomic vibrations in a metal. Consider point ions of mass M and charge e immersed
in a uniform sea of conduction electrons. The ions are imagined to be in stable
equilibrium when at regular lattice points. If one ion is displaced a small distance r
from its equilibrium position, the restoring force is largely due to the electric charge
within the sphere of radius r centered at the equilibrium position. Take the number
density of ions (or of conduction electrons) as 5/4wR>, which defines R. (a) Show that
the frequency of a single ion set into oscillation is w = (¢¥/MR?)!2. (b) Estimate the
value of this frequency for sodium, roughly. (¢} From (a), (b), and some common
sense, estimate the order of magnitude of the velocity of sound in the metal.

*8. Soft phonon modes. Consider a line of ions of equal mass but alternating in charge,
with e, = e(—1)" as the charge on the pthion. The interatomic potential is the sum of
two contributions: (1) a short-range interaction of force constant C;, = vy that acts
between nearest neighbors onlv, and (2) a coulomb interaction between all ions.
(a) Show that the contribution of the coulomb interaction to the atomic force con-
stants is Cpc = 2(—1)? €*/p°a®, where a is the equilibrium nearest-neighbor distance.
(b) From (16a) show that the dispersion relation may be written as

w¥w = sin® §Ka + o 21 {(—=1)? (1 — cos pKayp ™,
fiym

where w§ = 4y/M and o = ¢*/va®. (c) Show that w? is negative (unstable mode) at the
zone boundary Ka = 7 if ¢ > 0.475 or 4/7{(3), where { is a Riemann zeta function.
Show further that the speed of sound at small Ka is imaginary if o> (21n 2)7! =
0.721. Thus w? goes to zero and the lattice is unstable for some value of Ka in the
interval (0,7) if 0.475 < o < 0.721. Notice that the phonon spectrum is not that of a
diatomic lattice because the interaction of any ion with its neighbors is the same as
that of any other ion.

Chapter 5(5) Phonons [I. Thermal Properties

1. Singularity in density of states. (a) From the dispersion relation derived in Chapter
4 for a monatomic linear laitice of N atoms with nearest neighbor interactions, show

that the density of modes is

2N 1

D(w) = 7 (L~ )




*5.

where @, is the maximum irc,quency (b) <ippose that an optical phonon branch has
the form w(K) = wg — AK*, near K= 0 in three dimensions. Show that D(@) =
(L2 27w/ AY?) (wy — @)'"2 for w < wp and D{w) = 0 for @ > wy . Here the density"of
modes is discontinuous. . b ‘

R.ns thermal dilation of crystal cell. (;) Estimate f6r1300 K the root mean square

thermal dilation AV/V for a primitive cell of sodium. Take the bulk modulus as 7 X

10'° erg cm 2. Note that the Debye temperature 158 K is less than 300 K, so that the
thermal energy is of the order of kgT. (b) Use this result to estimate the root mean
square thermal fluctuation Aa/a of the lattice parameter.

. Zero point lattice displacement and strain. (a) In the Debye appruximation, show

that the mean square displacement of an atom at absolute zero is (R®) =
3hw/872pv3, where v is the velocity of sound. Start from the result (4.29) summed
over the independent lattice modes: {R%) = (A/2pV)Sw ™. We have included a factor
of 4 to go from square amplitude to square displacement. (b) Show that S ' and
(R* diverge for a one-dimensional lattice, but that the mean square strain is finite.
Consider ((9R/ar)%) = §ZK?u} as the mean square strain, and show that it is equal to
hobL/I4ATMN©3 for a line of N atoms each of mass M, counting longitudinal modes
only. The divergence of R? is not significant for any physical measurement.

. Heat capacity of layer lattice. (a) Consider a dielectric crystal made up of layers of

atoms, with rigid coupling between layers so that the motion of the atoms is restricted
to the plane of the layer. Show that the phonon heat capacity in the Debye approxi-
mation in the low temperature limit is proportional to T2. (b) Suppose instead, as in
many layer structures, that adjacent layers are very weakly bound to each other.
What form would you expect the phonon heat capacity to approach at extremely low
temperatures?

Gruneisen constant. (a) Show that the free energy of a phonon mode of ﬁé;uency @
is kgT In {2 sinh (hw/2kyT)]. It is necessary to retain the zero-point energy {hw to

obtain this result. (b) If A is the fractional volume change, then the free energy of the

crystal may be written as
F(A, T) = §BA? + kgT 2, In [2 sinh (Awx/2ksT)]

where B is the bulk modulus. Assume that the volume dependence of oy is Sa/w =
—yA, where vy is known as the Griineisen constant. If y is taken as independent of the

*This problem is somewhat difficult.



*6.

mode K, show that F is a minimum with respect to A when BA =
yZ2ihw coth (Ra2kgT), and show that this may be written in terms of the thermal
energy density as A = yU(TVYB. (c¢) Show that on the Debye model y=
—d In 6/3 In V. Note: Many approximations are involved in this theory: the result (a)

is valid only if w is independent of temperature; y may be quite different for different
modes. '

Density of modes of square lattice. The dispersion relation of a square lattice with
nearest-neighbor interactions was found in Problem 4.1 to be oM =2C(2 -
cos K.a — cos Kya). Note that the Brillouin zone can be divided into eight equivalent
sectors. If you have access to a microcomputer, divide a sector into around 100
squares, evaluate w at the center of each square (or at common corners), and plot a
histogram of the number of squares per unit frequency range. Sketch D{(w) as a
function of . In the calculation take 2C = 1 and M = 1.

Chapter 6 (6) Free Electron Fermi Gas

1. Kinetic er.ergn of electron gas. Show that the kinetic energy of a three-dimensional

gas of N free electrons at 0 K is
Uo =#Ner . ' {60)

Pressure and bulk modulus of an electron gas. (a) Derive a relation connecting the
pressure and volume ot an electron gas at O K. Hint: Use the result of Problem 1 and
the relation between €, and electron concentration. The result may be written as
p = §(Uy/V). (b) Show that the bulk modulus B = —V(9p/aV) of an electron gas at

0 K is B = 5p/3 = 10Uy/9V. (c) Estimate for potassium, using Table 1, the value of
the electron gas contribution to B.

Chemical potential in two dimensions. Show that the chemical potential of a Fermi
gas in two dimensions is given by:

w(Ty = kT In {explmnh2imkgT) — 1] | (&1

for n electrons per unit area. Note: The density of orbitals of a free electron gas in
two dimensions is independent of energy: D(e) = m/mh?, per unit area of specimen.



4.

*7.

Fermi gases in astrophyrics. (3) Given Mg = 2 X 10® g for the mass of the Sun,
estimate the number of electrons in the Sun. In a white dwarf star this number of
electrons may be ivnized and contained in a sphere of vadius 2 X 10° cm; find the .
Fermi energy of the electrons in electrun volts. (b) The energy of an electrou in the
relativistic limit € > mc? is related to the wavevector as € = pc = hkc. Show that
the Fermi energy in this limit is ex = Aic(N/V)!? | roughly. (c) If the above number
of electrons were contained within a pulsar of radius 10 km_ show that the Fermi
energy would be =10* eV. This value explains why pulsars are believed to be com-
posed largely of neutrons rather than of protons and electrons. for the energy re-

lease in the reaction n— p + e is only 0.8 x 10° eV, which is not large enough to
enable many electrons to form a Fermi sea. The neutron decay proceeds only until
the electron concentration builds up enough to create a Fermi level of 0.8 x 10° eV,
at which peint the neutron, proton, and electror concentrations are in equilibrium.

Liguid He®. The atom He® has spin $ and is a frnnion. The density of liquid He® is
0.081 g cm ™2 near absolute zero. Calculate the Sermi energy € and the Fermi
temperature Tr. ' :

. Frequency dependence of the electrical conductivity. Us= the equation m(dv/dt +

/1) = —eE for the electron drift velocity v to show that the conductivity at fre-
quency  is

1 + iwr \
) , (62)

olw) = o(0) (m

where o{0) = ne’r/m .

Dynamic rmagnetoconductivity tensor for free electrons. A metal with a concentra-
tion n of free electrons of charge —e is in a static magnetic field B2. The electric
current density in the ry plane is related to the electriz fizld by

Jr = ok ¥ ol Jy = cr,.,f“:*'-i- W

Assome that the frequency w 3 w. and w & /7, where w, = eB/mc and r is the
collision time. (a) Sclve the drift velocity equation (4G) to find the components of the
inagnetoconductivity tensor:

- = il . — 2 g e 2
Ty = Oy = iwpldme ; Oy = ~ U = Ghepidne” |

!



*8,

where w? = 4mme*/m. (b) Note from a Maxwell equation thai the dielectric function
tensor of the medium is related to the conductivity tensor as € = 1 + i(4n/w)o.
Consider an electromagnetic wave with wavevector k = ki. Show that the disper-
sion relation for this wave in the medium is -

'czk2=w2—w,2,twcw§/w. (63)

At a given frequency there are two modes of propagation with different wavevectors
and different velocities. The two meodes correspond to circularly polarized waves.
Because a linearly polarized wave can be decomposed into two circularly polarized
waves, it follows that the plane of polarization of a nearly polarized wave will be
rotatcd by the magnetic field.

Cohesive energy of free electron Fermi gas. We define the dimensionless length r,
as ro/ay, where ry is the radius of a sphere that contains one electron, and ay is the
Bohr radius A%¢®*m. (a) Show that the average kinetic energy per electron in a free
electron Fermi gas at 0 K is 2.21/r2, where the energy is expressed in rydbergs,

*This problem is somewhat difficult.

with 1 Ry = me*/2A%. (b) Show that the coulomb energy of a point positive charge ¢
interacting with the uniform electron distribution of one electron in the volume of
radius rg is —3e*/2rg , or —3/r, in rydbergs. (c) Show that the coulomb self-energy of
the electron distribution in the sphere is 3¢%/5ry, or 6/5r, in rydbergs. (d) The sum
of (b) and (c) gives —1.80/r, for the total coulomb energy per electron. Show that the
equilibrium value of r, is 2.45. Will such a metal be stable with respect to separated
H atoms?

Static magnetoconductivity tensor. For the drift velocity theory of (51), show that

the static current density can be written in matrix form as

Jx o l ~wr7 0 E,
= ——=ler 1 0 E, . (64)
i el o 1+werf\e

In the high magnetic field limit of w.r ®» 1, show that
Oy-=nec/B = -0y, . (65}

In this limit o, = 0, to order l/w 7. The quantity o, is called the Hall conductivity.

12



10. Maximum surface resistance. Consider a square sheet of side L, thickness d, and

*11.

electrical resistivity p. The resistance measured between opposite edges-of the
sheet is called the surface resistance: R,, = pL/Ld = p/d, whicli is independent of
the area L? of the sheet. (R,, is called the resistance per square and is expressed in
ohms per square, because p/d has the dimensions of chms.) If we express p by (44),

then K., = m/nde®r. Suppose now that the minimum value of the collision time is
determined by scattering from the surfaces of the sheet, so that r = d/vg, where v
is the Fermi velocity. Thus the maximum surface resistivity is R,q =~ mog/nd®e’.

Show for a monatomic metal sheet one atom in thickness that R, = het = 4.1 k),

where 1 k2 is 10 ohms.

Small metal spheres. Consider free electrons in a spherical square well potential of
radius a, with an infinitely bigh boundary. (a) Show that the wave function of an
orbital of angular momentum € and projection m has the form

"l = ka(f)yem(a,'l’) 4 _ (%)
where the radial wave function has the form
Rielr) = (&/ ")m]eﬂfz(kf ),

and Y is a spherical harmonic. Here J is a Bzssel function of half-integral order and
satisfies the boundary condition J¢4y2{ka) = 0. The roots give the energy eigenval-
ues € of the levels above the bottom of the well, where € = #%k%/2m . (b) Show that

the order of the levels above the ground orbital is

is, 1p, 1d, 25, 1f, 2p, 1g, 2d, 1h, 3s, 2f, . . .,
where s, p, d, f, g, hdenote £ =0, 1, 2, 3, 4, 5.

Chapter~7(7) Energy Bands

. Square lattice, free electron energies. (a) Show for a simple square lattice (two di-

mensions) that the kinetic energy of a free electron at a corner of the first zone is
higher than that of an electron at midpoint of a side face of the zone by a factor of 2.
(b) What is the corresponding factor for a simple cubic lattice (three dimensions)?

(c) What bearing might the result of (b) have on the conductivity of divalent metals?

13



2. Free electron energies in reduced zone. Consider the free electron energy bands of
an fee crystal lattice in the approximation of an empuy lattice, but in the reduced zone
scheme in which all ks are transformed to lie in the first Brillouin zone. Plot roughly
in the [111] direction the energies of all bands up to six times the Jowest band energy
at the zone boundary at k = (2w/a)(,4,4). Let this be the unit of energy. This prob-
lem shows why band edges need not necessarily be at the zone center. Several of the

degeneracies (band crossings) will be removed when account is taken of the crystal
potential. '

3. Kronig-Penney model. (a) For the delta-function potential and with P < 1, find at
k = 0 ihe energy of the lowest energy band. (b) For the same problem find the band
gap at k = n/a.

4. Potential energy in the diamond structure. (a) Show that for the diamond structure
the Fourier component Ug of the crystal potential seen by an electron is equal to zero
for G = 2A, where A is a basis vector in the reciprocal lattice referred to the conven-
tional cubic cell. (b) Show that in the usual first-order approximation to the solutions
of the wave equation in a penodlc lattice the energy gap vanishes at the zone bound-
ary plane normal to the end of the vector A.

027
L 026} — ™
% i
-E- 0251 Energy gap
£ i
= i
v 3
] . .
c " N o i "
0.4 - 0 0.005 0.01
Linaginary part of kK/C
| 1 1 1
0'2%.48 0.49 0.50 0.51 _ 0.52

Real part of k/C

Figdre 12 In the energy gap there exist solutions of the wave equation for complex values of the
wavevector. At the boundary of the first zone the real part of the wavevector is VG The imaginary
part of k in the gap is plotted in the approximation of two plane waves, for U = 0.61 A%¢3/2m. 1y
an infinite unbounded ervstal the wavevector must be real, or else the amplitude will mcrease

without limit. But on a surface or af a junction there can exist solutions with complex wavevecton.
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