CHEMICAL ENGINEERING: PRESENT AND FUTURE

a topical survey

EMERGING AREAS

1. BIOENGINEERING

1.1. BIOPROCESS ENGINEERING

```
Bio-reactors
       analysis and design
      computer control
      continuous processing - beer, etc., produced in quantity
Large-scale tissue culture
      plant and animal cells
      effect of mechanical shear, cell-surface interactions, materials
             for anchorage
      mass transfer/shear in large-scale tissue culture
Bioseparation and purification systems -
      super-critical fluid extraction
      membrane systems: osmosis/dialysis
      chromatographic characteristics
      electrophoresis
Monitoring and control
     biosensors ·
            CHEMFET - for chemical input
            applications:
                  indwelling glucose sensors,
                  swallable sensors for GI tract
                  in-situ identification of tumors
                  field implanted sensors
                  on-line measurement
      spectroscopy
            MS, GC, LC, NMR for non-lab environment
Asepsis, containment and detection of trace contamination
      in large reactors
Risk assessment
      releasing genetically altered micro-organisms into environment
Agriculture, food processing and waste treatment
Biosubstance database
      enzymes, proteins, micro-organisms
Bioprocess applications of proteins
      environment-structure-function relations
      molecular recognition using antibodies
      biocatalysis
            cofactor requirements and multiple enzyme catalytic sequence
            enzymatic catalysis under abiotic conditions
      improved biocatalysts from protein engineering
Protein recovery
      equilibrium partitioning of protein mixtures
      interactions with interfaces
      affinity purification
      genetic engineering for enhanced separations
Protein processing -
      preservation, structure/bioactivity
      separation from dilute solutions
```

Catalytic and chemical functions of cells

transport pathways, barriers, and facilitators
activities in metabolic reaction networks
regulation of metabolic network structure
long-term genetic drift
cell interactions with interfaces
genetic engineering for chemicals production and degradation
genetic engineering for broadly enhanced cell activity
Artificial enzyme templates translation of chemical catalyst knowledge and simulation of
catalyst, e.g., shape-selective zeolites, synthetic antibodies
Surface interactions - membrane transport

1.2. BIOMEDICINE

Historical perspectives hemodynamics water and solute transport pharmacokinetics in chemotherapy biomaterials organ analogs blood processing Future directions interfacial phenomena in biological systems liquid-solid interfacial phenomena liquid-gas interfacial phenomena transport issues in biological systems organ systems intracellular systems protein transport and dynamics macromolecular and cellular phenomena with an emphasis on recognition properties protein science cellular science

Protheses and biomaterials: medical devices
Medical diagnostics
Chemical synthesis of drugs
Computed-aided drug design
Genetic engineering and recombinant human proteins
Gene therapy
Drug delivery systems
Medical imaging
Angio-tension-converting enzyme inhibitors

Challenges to Chemical Engineers

Human health

artificial organs, artificial tissues and prostheses
diagnostics
preventing and curing disease

Intellectual Frontiers
Models for fundamental biological interactions
Biological surfaces and interfaces
Engineering analysis of complex biological systems

blood oxygenation by liquid membrane permeation decompression sickness thermal control in the human oxygenators for infants modeling respiratory control flow and shear field in artificial heart valves artificial kidney and its interaction with the host body

2. MATERIALS

2.1. POLYMERS, CERAMICS AND COMPOSITES

Synthesis of new polymeric materials polymers developing novel microstructures block copolymers liquid crystral polymers polymerization in Langmuir-Blodgett films silane and other non-carbon-backbone polymers ion-containing polymers electrical, optical and magnetic properties of polymers biological synthesis of polymeric materials Developments in polymer processing polymerization reactive processing processing of polymer composites Emerging areas of polymer applications adhesion

medicine electronics and photonics

Interdisciplinary character of polymer science Theory: dynamics of polymers in bulk New material development polymer blends biomaterials Analytical techniques

synchrotron SAXS Deuterium NMR SANS

Challenges to Chemical Engineers

Polymers Polymer composites

Advanced ceramics -- sol-gel processing

chemical additives in ceramic processing

Ceramic composites Composite liquids

Intellectual Frontiers

Microscale structures and processes

new concepts in molecular design of composite materials the role of interfaces in materials chemistry understanding the molecular behavior of composite liquids chemical dynamics and modeling of molecular processes

The intimate connection between materials synthesis and processing processing of complex liquids processing of powders processing of polymers process design and control Fabrication and repair of materials systems designing systems from the molecules on up chemical processing in the fabrication of materials systems detection and repair of flaws in materials systems

Plastic Components for Automobiles Petrochemicals Ceramics for Engines Coating Technologies Computed-aided Process Design Food Packaging and Preservation Materials for Housing MATERIALS FOR THE FUTURE

2.2. MICROELECTRONIC AND OPTICAL MATERIALS

Electronic devices
Device fabrication
 silicon production
 lithography
Light wave media (optical fibers)
 optical fiber manufacturing
 thermophoresis
 ultrapurifiction

Organometallic vapor phase epitaxy
experimental investigations
models
Plasma processing
experimental investigations
modeling approaches
Process control of microelectronics manufacturing

Current Chemical Manufacturing Processes

Microcircuits

Light wave media and devices

Recording media

Materials and devices for interconnection and packaging
Photovoltaics
Superconductors

Intellectual Frontiers
Process integration
Reactor engineering and design

Ultrapurification
Chemical synthesis and processing of polymeric materials
Chemical synthesis and processing of ceramic materials
Deposition of thin films
Modeling and the study of chemical dynamics
Engineering for environmental protection and process safety

Optical Fibers
Nanofabrication
Electronic Packaging
Optical Interconnection and Optoelectronic Devices
Display Technologies
Data Storage and Retrieval
Single-atom Manipulation
Microelectronics factory of the future

3. ENVIRONMENTAL PROTECTION AND ENERGY

Transport and transformation in the environment Aerosols

coal combustion aerosol formation aerosol and cloud chemistry

nucleation chemical characterization of particles

microcontamination control

Treatment of hazardous wastes

incineration of hazardous wastes

photocatalytic degradation of hazardous wastes on semiconductor surfaces

Energy-environmental interface Photovoltaic power generation

Combustion chemistry

Reduction of combustion-generated pollution by combustion process modification

Char gasification reactions

Impact on society of chemicals in the environment

chemical industry safety

combustion of fuels for power generation and transportation hazardous waste management

Design of inherently safer and less polluting plants and processes Combustion

hydrocarbons and fuel-bound nitrogen

soot

ash

sulfur oxides

fires and explosions

Hazardous waste management

detoxification of currently generated waste

thermal destruction

biodegradation

separation processes

wet oxidation

remediation of toxic waste sites

separation processes

biodegradation

monitoring

Behavior of effluents in the environment

the atmospheric environment the aquatic and soild environment ambient monitoring multimedia approach to integrated chemical management Assessment and management of health, safety and environmental risks risk assessment hazard identification and assessment

exposure assessment risk management

Technologies for exploiting energy resources enhanced oil recovery shale oil production conversion of coal to gaseous and liquid fuels new raw materials for petroleum refineries municipal solid waste as an energy source nuclear energy

nuclear fission nuclear fusion electrochemical energy conversion and storage solar power geothermal energy plant biomass as a fuel source Technologies for exploiting mineral and metal resources high-concentration raw materials

low-concentration raw materials waste streams as sources of minerals and metals Intellectual frontiers

in-situ processina processing solids separation processes materials advanced methods for design and scale-up other important research

Designer gasoline Liquid fuels from natural gas, coal and shale Fuel-efficient and low-emission vehicles Portable electric power Fuel cells Nuclear energy: promise and problems Solar-electric power generation Solar-photoelectrochemical cells Catalytic cracking

Atmospheric chemistry Life cycle analysis Risk and impact analysis Manufacturing with mineral environmental impact Control of power plant emissions Environmentally friendly products Recycling Separation and conversion for waste reduction Cleaning up contaminated sites Catalysts for control of automobile exhaust

SUBDISCIPLINES

1. FLUID MECHANICS AND TRANSPORT PHENOMENA

The future - challenges and opportunities in research nonlinear systems computational simulation fluids with microstructure

Directions for the future
Examples from the present
single crystal growth from the melt
mixing in deterministic flows
flow of granular materials
optical characterization of complex fluids
finite element solutions of free surface flows
simulations of the dynamics of dense dispersions

Nonlinear dynamics - examples: polymer melt processing two-phase flow in porous media heat and mass transfer in pipe flow

2. THERMODYNAMICS

Modern methods

macroscopic correlation methods molecular theory computer simulation computer graphics intermolecular potentials

Current problems

phase equilibria of complex systems fluid behavior in micropores

The future

research

computer-aided materials design surface phenomena biotechnology and biomedicine phase equilibria and fluid properties

Semiempirical correlations for conventional processes
Thermodynamics for rate processes, including catalysis
Integration of thermodynamics into the broad concerns of chemical
engineering

Microstructural fluids: a primer

Microstructural fluids: theory and simulation

3. KINETICS, CATALYSIS AND REACTOR ENGINEERING

contemporary challenges
 representation of rate and equilibrium processes
 reactor modeling
 catalysis

Chemical reactor modeling Kinetic modeling Integration

Catalytic Design The catalytic design problem
Catalytic surfaces
Transport within pores
Catalytic impregnation profiles
Catalyst particle shape
An industrial example

Chemical Transport Reactions —
 microlithographic processes
 electron-beam lithography polymers
 resists for pattern-transfer
 plasma etching
 coating and dissolution processes
 dissolution rate measurements using laser interferometry

expt./theor. study of CVD processes laser diagnostics of silicon CVD low pressure CVD of silicon nitride modeling low pressure CVD reactors reactor analysis of Si deposition by CVD using disilane

metal organic CVD at stagnation point spectroscopy of organometallic CVD kinetics of tungsten CVD decomposition kinetics of hydrides in CVD of III-V semiconductors design considerations/alternatives for epitaxial CVD reactors reactor design for growing compound semiconductor epitaxial layers

CVD in a Siemens decomposer silane pyrolysis: nucleation control modeling semi-conductor film growth modeling of glow discharge reactors theor./expt. study of parallel-plate plasma etching kinetic analysis of polysilicon etching in discharges rf-discharge plasma etch chemistry

4. PROCESS ENGINEERING

.

Design in process engineering \neg a model of the design process Synthesis \neg Expert Systems Analysis

steady-state modeling flowsheeting programs convergence

dynamics
stiff equation sets
the index problem
architectures for simulators
partial differential equations

optimization

Process Control Theory -

The role of process control theory and experiment Control theory of the 1960s and 1970s Model predictive control Robust process control Control structure selection Some research topics for the next decade

A hierarchy of paradigms
A process engineering paradigm
hierarchies of designs
a higher-level process understanding
"high value added" products
conceptual design of batch versus continuous processes
new computer aided design tools
A hierarchical approach to conceptual design
products, by-products and recycles
separation system specification

control system synthesis and safety

Symbolic Computing and Artifical Intelligence in Chemical Engineering:

Computing in chemical engineering process design product and process development understanding system behavior feedback control

heat exchanger networks

monitoring and diagnosis of process operations planning and scheduling of process operations

The essential framework of artificial intelligence applications in chemical engineering

making a mind versus modeling the brain AI and computer programming modeling knowledge problem-solving paradigms

Descriptive simulation of physiochemical systems Formal description and analysis of process trends Planning of process operations Conceptual design of chemical processes Computer-assisted process and control engineering -Mathematical Models of Fundamental Phenomena

Hydrodynamic systems
Polymer processing
Petroleum processing
combustion systems

environmental systems

Process Design

Computer-aided design of new processes Computer-assisted process retrofitting Research opportunities in process design

Process Operation and Control

Measurement

Interpretation of process information Integration of process design with control Robust and adaptive control

Batch process engineering

Process Sensors

Future sensor developments Research opportunities Process Engineering Information Management Implications of Research Frontiers

5. SURFACES, INTERFACES AND MICROSTRUCTURES

The nature of structure
Relationship to applications of chemical engineering
Biochemical and biomedical engineering
Electronic, photonic and recording materials and devices
Polymers, ceramics and composites
Processing energy and natural resources
Environmental protection, process safety and hazardous waste
management

Intellectual Frontiers

Catalysis

catalyst synthesis characterization of catalyst structure surface chemistry catalyst design

Electrochemistry and corrosion charge transfer

molecular dynamics

supramolecular microstructures

Electronic, photonic and recording materials and devices characterization of microstructure photoresist processing chemical vapor deposition and plasma deposition/etching

chemical vapor deposition and plasma deposition/etchi of thin films

mathematical modeling

Colloids, surfactants and fluid interfaces Ceramics, cements and stuctural composites Membranes

Research Needs

Instrumentation

V5.00 W

microscopy and microtomography scattering methods resonance spectroscopies other important methods cost and availability

Theory

6. PARTICLE SCIENCE AND TECHNOLOGY (PARTICUOLOGY)

Basic Problems in Particle Science and Technology Particle measurement, mathematics
Particle measurement, techniques
Sampling
Particle mechanics
Physics of particulate solids
Flow of fluid through particulate media
Multi-phase flow of particulate systems

Applications -

Agriculture

microscopy

Metallurgy iron and steel from powdered solids Petroleum prod. tertiary oil recovery; drilling mud Petroleum ref. particle size design for FCC catalyst particle size control for titanox Chemical mechanism of fog formation Environment Defence filtration of radioactive particles Power high-temp. dust removal for turbines improved combustion for FBC Coal Nuclear reprocessing of reactor fuel control of coal dust explosion Mining Transportation icing of aircraft propellers passage of particles through membranes Medicine Pharmacy tableting, pelleting, mixing exfoliation of pearlite Building

grain drying and transportation

milk powder, minute rice

particle characterization -- size, shape, etc. sampling and sample preparation particle generation, preparation, pre- and after-treatment separation -- S/S, S/G, S/L; filtration aerosol slurry size reduction -- crushing, grinding and comminution agglomeration conveying - bulk, pneumatic, hydraulic storage solids feeding and metering flocculation chemical reaction fluidization health and safety magnetic/electrostatic effects instrumentation and measurement