g2 90 v SEHUPH 8 T BTl

SRR 2R

B B OXiGghk)
MMIX: ¥ TAERIRISCHFRAL

The Art of Computer

Programming,Volume 1
MMIX: A RISC Computer
for the New Millennium

DIETE F Fascicle

(22) Donald E.Knuth %

@ M TR
China Machine Press

R

HEHLEF R AR

F1E B

MMIX: F1 TAERISC AL

o

The Art of Computer Programming

Volume 1, Fascicle 1
MMIX: A RISC Computer for the New Millennium

OW i hi)

e DonaldE Knuth o
WA K2F
ek

I A

China Machine Press

KTRESITNX L2 ERECEKPHEL AL BB RHRRE SUEE . AME
T GHELBFRHZEAR, Bk, F3R: EXER WHLIRE, HAEEBRAEZ
TR — &y Rk, EREF AR T B E S ARNMMIX—REFRRIMIXE
—AURISCAHERMPMITEN, AR TMMIXICHIES. B, AMUNFETEHEXEFR
o RTEFUR SRR NG .

Simplified Chinese edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: The Art of Computer Programming, Volume 1, Fascicle 1,
MMIX: A RISC Computer for the New Millennium, (0-201-85392-2) by Donald E.Knuth ,
Copyright © 2005.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
ADDISON WESLEY.

#4355 HW; A Pearson Education (E:4:5F HAREH) BOEBERE, ThHREELE
.

RIS,
FHERME LR RARTESEAR

EBHREIES: E: 01-2005-3615

HBEEREE (CIP) Mg

HEARFRTZAR £18 U, MMIX: HTHEMRISCHEN (WEK) /
(X) %% (Knuth, D.E.) ¥ FisHi®. —4b30 HURT AR, 20063

54K 3C: The Art of Computer Programming, Volume 1, Fascicle 1: MMIX—A RISC
Computer for the New Millennium

ISBN 7-111-18031-3

I.ib- 0.0O%R- @OF- N.EBFLH IV.TP3114
R A BB CIPRIBE F (2006) 0109632

HUBE Lok tHARH: (st Bmis 5 7 E A28 BBEEES 100037)
HITEGEE: KiE€X

LA EREENRIA R A FENR - FEBEIE R R TR
20064F4 A 55 1R 1 /R ENARY

787mm x 1020mm 1/16 - 17.25E[12k

SEHT: 45.007C

AL, 0B EI. BT, 657, diddRF®iEn
A EEE: (010) 68326294

PREFACE

fas-ci-cle \'fasdkal\ n ... 1: a small bundle ... an inflorescence consisting of
a compacted cyme less capitate than a glomerule
. 2: one of the divisions of a book published in parts

— P. B. GOVE, Webster's Third New International Dictionary (1961)

THIS IS THE FIRST of a series of updates that I plan to make available at
regular intervals as I continue working toward the ultimate editions of The Art
of Computer Programming.

I was inspired to prepare fascicles like this by the example of Charles Dickens,
who issued his novels in serial form; he published a dozen installments of Oliver
Twist before having any idea what would become of Bill Sikes! I was thinking
also of James Murray, who began to publish 350-page portions of the Oxford
English Dictionary in 1884, finishing the letter B in 1888 and the letter C in
1895. (Murray died in 1915 while working on the letter T; my task is, fortunately,
much simpler than his.)

Unlike Dickens and Murray, I have computers to help me edit the material,
so that I can easily make changes before putting everything together in its final
form. Although I'm trying my best to write comprehensive accounts that need
no further revision, I know that every page brings me hundreds of opportunities
to make mistakes and to miss important ideas. My files are bursting with notes
about beautiful algorithms that have been discovered, but computer science has
grown to the point where I cannot hope to be an authority on all the material
I wish to cover. Therefore I need extensive feedback from readers before I can
finalize the official volumes.

In other words, I think these fascicles will contain a lot of Good Stuff, and
I'm excited about the opportunity to present everything I write to whoever
wants to read it, but I also expect that beta-testers like you can help me make it
Way Better. As usual, I will gratefully pay a reward of $2.56 to the first per-
son who reports anything that is technically, historically, typographically, or
politically incorrect.

Charles Dickens usually published his work once a month, sometimes once
a week; James Murray tended to finish a 350-page installment about once every
18 months. My goal, God willing, is to produce two 128-page fascicles per year.
Most of the fascicles will represent new material destined for Volumes 4 and
higher; but sometimes I will be presenting amendments to one or more of the
earlier volumes. For example, Volume 4 will need to refer to topics that belong
in Volume 3, but weren’t invented when Volume 3 first came out. With Iuck,
the entire work will make sense eventually.

iv PREFACE

Fascicle Number One is about MMIX, the long-promised replacement for MIX.
Thirty-seven years have passed since the MIX computer was designed, and com-
puter architecture has been converging during those years towards a rather
different style of machine. Therefore I decided in 1990 to replace MIX with a
new computer that would contain even less saturated fat than its predecessor.

Exercise 1.3.1-25 in the first three editions of Volume 1 spoke of an extended
MIX called MixMaster, which was upward compatible with the old version. But
MixMaster itself has long been hopelessly obsolete. It allowed for several giga-
bytes of memory, but one couldn’t even use it with ASCII code to print lowercase
letters. And ouch, its standard conventions for calling subroutines were irrevoca-
bly based on self-modifying instructions! Decimal arithmetic and self-modifying
code were popular in 1962, but they sure have disappeared quickly as machines
have gotten bigger and faster. Fortunately the modern RISC architecture has a
very appealing structure, so I've had a chance to design a new computer that is
not only up to date but also fun.

Many readers are no doubt thinking, “Why does Knuth replace MIX by
another machine instead of just sticking to a high-level programming language?
Hardly anybody uses assemblers these days.” Such people are entitled to their
opinions, and they need not bother reading the machine-language parts of my
books. But the reasons for machine language that I gave in the preface to
Volume 1, written in the early 1960s, remain valid today:

e One of the principal goals of my books is to show how high-level construc-
tions are actually implemented in machines, not simply to show how they
are applied. I explain coroutine linkage, tree structures, random number
generation, high-precision arithmetic, radix conversion, packing of data,
combinatorial searching, recursion, etc., from the ground up.

e The programs needed in my books are generally so short that their main
points can be grasped easily.

e People who are more than casually interested in computers should have at
least some idea of what the underlying hardware is like. Otherwise the
programs they write will be pretty weird.

¢ Machine language is necessary in any case, as output of some of the software
that I describe.

¢ Expressing basic methods like algorithms for sorting and searching in ma-
chine language makes it possible to carry out meaningful studies of the effects
of cache and RAM size and other hardware characteristics (memory speed,
pipelining, multiple issue, lookaside buffers, the size of cache blocks, etc.)
when comparing different schemes.

Moreover, if I did use a high-level language, what language should it be? In
the 1960s I would probably have chosen Algol W; in the 1970s, T would then
have had to rewrite my books using Pascal; in the 1980s, I would surely have
changed everything to C; in the 1990s, I would have had to switch to C4t and
then probably to Java. In the 2000s, yet another language will no doubt be de

PREFACE v

rigueur. I cannot afford the time to rewrite my books as languages go in and
out of fashion; languages aren’t the point of my books, the point is rather what
you can do in your favorite language. My books focus on timeless truths.
Therefore I will continue to use English as the high-level language in The Art
of Computer Programming, and I shall continue to use a low-level language
to indicate how machines actually compute. Readers who only want to see
algorithms that are already packaged in a plug-in way, using a trendy language,
should buy other people’s books.
The good news is that programming for MMIX is pleasant and simple. This
fascicle presents
1) a programmer’s introduction to the machine (replacing Section 1.3.1 of the
third edition of Volume 1);
2) the MMIX assembly language (replacing Section 1.3.2);
3) new material on subroutines, coroutines, and interpretive routines (replacing
Sections 1.4.1, 1.4.2, and 1.4.3).

Of course, MIX appears in many places throughout the existing editions of Vol-
umes 1-3, and dozens of programs need to be rewritten for MMIX before the next
editions of those volumes are ready. Readers who would like to help with this
conversion process are encouraged to join the MMIXmasters, a happy group of
volunteers based at mmixmasters.sourceforge.net.

The fourth edition of Volume 1 will not be ready until after Volumes 4
and 5 have been completed; therefore two quite different versions of Sections
1.3.1,1.3.2,1.4.1, 1.4.2, and 1.4.3 will coexist for several years. In order to avoid
potential confusion, I've temporarily assigned “prime numbers” 1.3.1, 1.3.2,
1.4.1, 1.4.2", and 1.4.3" to the new material.

I am extremely grateful to all the people who helped me with the design
of MMIX. In particular, John Hennessy and Richard L. Sites deserve special
thanks for their active participation and substantial contributions. Thanks also
to Vladimir Ivanovié for volunteering to be the MMIX grandmaster/webmaster.

Stanford, California D. E. K.
May 1999

You can, if you want, rewrite forever.
— NEIL SIMON, Rewrites: A Memoir (1996)

' Donald E. Knuth

L UEGVE - E. i, P& i)

| BFEEEIREFSTER S EN LR T
L. BT R THMMERRGTXH
| METAFONT, W RHTFHEETF &N,
 MMRENRE, KnuthBFER, EHE
CEEAFITENEFGHTEROERRAK
| $2. KnuthZRZEER A 2 8R0H N R ALK
| BRI A X AL,

] AL
. ST TE

WRHEFRITZA

' £ . Donald E.Knuth
 FE. BHIEBER

) -
HHRARERITZA

W4t W2
MR £ AL S

| ma% HRAOUERR)
2 E R R TTATHES

g Fiit20064E5 8 H iR

WL WM ‘

N AL TR %4% %Sﬂﬂ(n%’ﬁ)
< e

. [L—
D | iSRRI A

| Fmit20064E5A HAR

:
\ [me
! [rorwiy

The Art of

L e | 4G SRAONERR)
| £ AR A ERIFSE

s Fi+20064E9 8 Hi kR
BigiEEXE
ESLEETH

CONTENTS

H

Preface 11
Chapter 1 Basic Concepts

1.3 MMIX - occcvvrreneemmininineniiiiniens 2
1.3.1° Description of MMIX ------ 2
1.3.2° The MMIX Assembly

Language ---::coceoveeeeeeeoee28
1.3.3" Applications to
Permutations -« s+« eeeees 51

1.4’ Some Fundamental Programming

Techniques ««+--wermoveersnerernnnna5?
1.4.1’ Subroutines::+:--cteereeeeriaeaa§2
1.4.2" COrOULINES -+« +++rtrrererecee-66
1.4.3" Interpretive Routines --------- 73

Answers to Exercises --:ocoooreeeeeeeeen 94

&4

R
1T KB
1.3’ MMIX

14" RS ARRMBFRIBAR -
141" FRRJE ooovvveeeeirnnees
142" JFFBRE «ovveveeee e
143" FREEPERFE - oovveeneees

FEBIRBAIET - oooomme e

...131

..136
1.3.17 MMIXKEIR -vvvevrereeeenens
1.3.2° MMIX{ICZRIEZ --ooooveveee
1.3.3° ZEHEFNA IR veevee e

136
161
183

Chapter 1

Basic Concepts

2 BASIC CONCEPTS 1.3

1.3, MMIX

IN MANY PLACES throughout this book we will have occasion to refer to a com-
puter’s internal machine language. The machine we use is a mythical computer
called “MMIX.” MMIX-— pronounced EM-micks —is very much like nearly every
general-purpose computer designed since 1985, except that it is, perhaps, nicer.
The language of MMIX is powerful enough to allow brief programs to be written
for most algorithms, yet simple enough so that its operations are easily learned.

The reader is urged to study this section carefully, since MMIX language
appears in so many parts of this book. There should be no hesitation about
learning a machine language; indeed, the author once found it not uncommon to
be writing programs in a half dozen different machine languages during the same
week! Everyone with more than a casual interest in computers will probably get
to know at least one machine language sooner or later. Machine language helps
programmers understand what really goes on inside their computers. And once
one machine language has been learned, the characteristics of another are easy
to assimilate. Computer science is largely concerned with an understanding of
how low-level details make it possible to achieve high-level goals.

Software for running MMIX programs on almost any real computer can be
downloaded from the website for this book (see page ii). The complete source
code for the author’s MMIX routines appears in the book MMIXware [Lecture Notes
in Computer Science 1750 (1999)]; that book will be called “the MMIXware
document” in the following pages.

1.3.1". Description of MMIX

MMIX is a polyunsaturated, 100% natural computer. Like most machines, it has
an identifying number — the 2009. This number was found by taking 14 actual
computers very similar to MMIX and on which MMIX could easily be simulated,
then averaging their numbers with equal weight:

(CrayI + IBM 801 + RISCII + Clipper C300 + AMD 29K + Motorola 88K
+ IBM 601 + Inteli960 + Alpha21164 + POWER?2 + MIPS R4000
+ Hitachi SuperH4 + StrongARM 110 + Sparc64) /14
= 28126/14 = 2009. (1)

The same number may also be obtained in a simpler way by taking Roman
numerals.

Bits and bytes. MMIX works with patterns of Os and 1s, commonly called
binary digits or bits, and it usually deals with 64 bits at a time. For example,
the 64-bit quantity

1001111000110111011110011011100101111111010010100111110000010110 (2)

is a typical pattern that the machine might encounter. Long patterns like this
can be expressed more conveniently if we group the bits four at a time and use

1.3.7 DESCRIPTION OF MMIX 3

hezadecimal digits to represent each group. The sixteen hexadecimal digits are

0=0000, 4=0100, 8=1000, c=1100,
1=0001, §5=0101, 9=1001, d=1101, @)
2 = 0010, 6 = 0110, a = 1010, e = 1110, 3
3=0011, 7=0111, b=1011, f=1111.

We shall always use a distinctive typeface for hexadecimal digits, as shown here,
so that they won’t be confused with the decimal digits 0-9; and we will usually
also put the symbol # just before a hexadecimal number, to make the distinction
even clearer. For example, (2) becomes

#9e3779b97f4a7c16 (4)

in hexadecimalese. Uppercase digits ABCDEF are often used instead of abcdef,
because *9E3779B97F4A7C16 looks better than *9e3779b97f4a7c16 in some
contexts; there is no difference in meaning.

A sequence of eight bits, or two hexadecimal digits, is commonly called a
byte. Most computers now consider bytes to be their basic, individually ad-
dressable units of data; we will see that an MMIX program can refer to as many
as 2% bytes, each of which has its own address from *0000000000000000 to
*EEEELEEEFfEFEFEE. Letters, digits, and punctuation marks of languages like
English are often represented with one byte per character, using the American
Standard Code for Information Interchange (ASCII). For example, the ASCII
equivalent of MMIX is #*4d4d4958. ASCII is actually a 7-bit code with control
characters #00-#1f, printing characters #20-#7e, and a “delete” character *7f
[see CACM 8 (1965), 207-214; 11 (1968), 849-852; 12 (1969), 166-178. It
was extended during the 1980s to an international standard 8-bit code known as
Latin-1 or ISO 8859-1, thereby encoding accented letters: pdté is #70e274e9.

“Of the 256th squadron?"
“Of the fighting 256th Squadron,” Yossarian replied.
“That’s two to the fighting eighth power.”

-— JOSEPH HELLER, Catch-22 (1961)

A 16-bit code that supports nearly every modern language became an in-
ternational standard during the 1990s. This code, known as Unicode UTF-16
or ISO/IEC 10646 UCS-2, includes not only Greek letters like & and o (*03a3
and #03c3), Cyrillic letters like II] and m (#0429 and #0449), Armenian letters
like ¢ and ; (*¥0547 and *#0577), Hebrew letters like ¥ (*05e9), Arabic letters
like Ji (*0634), and Indian letters like ¥ (*0936) or =T (*09b6) or & (*0b36)
or @y (¥0bb7), etc., but also tens of thousands of East Asian ideographs such
as the Chinese character for mathematics and computing, £ (*7b97). It even
has special codes for Roman numerals: MMIX = *216f 216f 21602169. Ordinary
ASCII or Latin-1 characters are represented by simply giving them a leading
byte of zero: pdté is #007000e2007400e9, & I’Unicode.

4 BASIC CONCEPTS 1.3.Y

We will use the convenient term wyde to describe a 16-bit quantity like the
wide characters of Unicode, because two-byte quantities are quite important in
practice. We also need convenient names for four-byte and eight-byte quantities,
which we shall call tetrabytes (or “tetras”) and octabytes (or “octas”). Thus

2 bytes = 1 wyde;
2 wydes =1 tetra;
2 tetras = 1 octa.

One octabyte equals four wydes equals eight bytes equals sixty-four bits.
Bytes and multibyte quantities can, of course, represent numbers as well as
alphabetic characters. Using the binary number system,

an unsigned byte can express the numbers 0 .. 255;

an unsigned wyde can express the numbers 0 .. 65,535;

an unsigned tetra can express the numbers 0 .. 4,294,967,295;

an unsigned octa can express the numbers 0 .. 18,446,744,073,709,551,615.

Integers are also commonly represented by using two’s complement notation, in
which the leftmost bit indicates the sign: If the leading bit is 1, we subtract 2" to
get the integer corresponding to an n-bit number in this notation. For example,
—1 is the signed byte #££; it is also the signed wyde *f££f, the signed tetrabyte
*££££££ff, and the signed octabyte *fffffffffff££££f. In this way

a signed byte can express the numbers —128 .. 127;

a signed wyde can express the numbers —32,768 .. 32,767;

a signed tetra can express the numbers —2,147,483,648 .. 2,147,483,647;

a signed octa can express the numbers —9,223,372,036,854,775,808 ..
9,223,372,036,854,775,807.

Memory and registers. From a programmer’s standpoint, an MMIX computer
has 2% cells of memory and 2% general-purpose registers, together with 25
special registers (see Fig. 13). Data is transferred from the memory to the
registers, transformed in the registers, and transferred from the registers to the

memory. The cells of memory are called M[0], M1}, ..., M[2%4 — 1]; thus if is
any octabyte, M[z] is a byte of memory. The general-purpose registers are called
$0, 81, ..., $255; thus if z is any byte, $z is an octabyte.

The 2% bytes of memory are grouped into 262 wydes, M,[0] = M.[1] =
M[0]M[1], M2{2] = M3(3] = M[2]M[3], . . .; each wyde consists of two consecutive
bytes M[2k]M([2k + 1] = M([2k] x 28 + M2k + 1], and is denoted either by M3[2k]
or by Mz[2k + 1]. Similarly there are 252 tetrabytes

My[4k] = My[ah + 1] = - = Mq[ak + 3] = M{4k]Mdk + 1] ... M[4k + 3),
and 2%! octabytes
Mg[8k] = M[8k + 1] = - - = Mg [8k + 7] = M[SK]M[8k + 1] ... M[8k + 7].

In general if z is any octabyte, the notations Mg[z], My[z], and Mg[x] denote
the wyde, the tetra, and the octa that contain byte Mjz]; we ignore the least

1.3.7 DESCRIPTION OF MMIX 5

$0: {
$1:
$2: [

$254: [
$255: [

minlm

b

S N .

1
I
]
T
T

*

L
LU gayu

!
[

T T -

[M rmmT N ETEET | Ml [oM] oM [
........ JM[zﬁ"—?)sz‘”-s)}M[ze‘-ﬂmzﬁ"—ejiM[z“-?IIM(zM-qlM[z“—ajjwzﬂ“-i)ﬁuz“-m

rA:|
rB: [

r2Z: [

Him
|

alniaEuinlsinin
MLT | H L_...L— i
[—‘...rd | ﬁ r_—...h— il

Fig. 13. The MMIX computer, as seen by a programmer, has 256 general-purpose
registers and 32 special-purpose registers, together with 2%¢ bytes of virtual memory.
Each register holds 64 bits of data.

significant lg ¢ bits of when referring to M;[z]. For completeness, we also write
M, [z] = M([z], and we define M[z] = M[z mod 2%4] when z < 0 or z > 264.

The 32 special registers of MMIX are called rA, B, ..., rZ, rBB, rTT,
rWW, XX, rYY, and rZZ. Like their general-purpose cousins, they each hold
an octabyte. Their uses will be explained later; for example, we will see that
rA controls arithmetic interrupts while rR holds the remainder after division.

Instructions. MMIX’s memory contains instructions as well as data. An in-
struction or “command” is a tetrabyte whose four bytes are conventionally called
OP, X, Y, and Z. OP is the operation code (or “opcode,” for short); X, Y, and Z
specify the operands. For example, #20010203 is an instruction with OP = #20,
X =*01, Y = #02, and Z = *03, and it means “Set $1 to the sum of $2 and
$3.” The operand bytes are always regarded as unsigned integers.

Each of the 256 possible opcodes has a symbolic form that is easy to re-
member. For example, opcode #20 is ADD. We will deal almost exclusively with
symbolic opcodes; the numeric equivalents can be found, if needed, in Table 1
below, and also in the endpapers of this book.

The X, Y, and Z bytes also have symbolic representations, consistent with
the assembly language that we will discuss in Section 1.3.2". For example,
the instruction #¥20010203 is conventionally written ‘ADD $1,$2,$3’, and the
addition instruction in general is written ‘ADD $X,8Y,$Z’. Most instructions have
three operands, but some of them have only two, and a few have only one. When
there are two operands, the first is X and the second is the two-byte quantity YZ;
the symbolic notation then has only one comma. For example, the instruction

6 BASIC CONCEPTS 1.3.1°

‘INCL $X,YZ’ increases register $X by the amount YZ. When there is only one
operand, it is the unsigned three-byte number XYZ, and the symbolic notation
has no comma at all. For example, we will see that ‘JMP @+4*XYZ’ tells MMIX
to find its next instruction by skipping ahead XYZ tetrabytes; the instruction
‘JMP @+1000000’ has the hexadecimal form *£003d090, because JMP = #*£0 and
250000 = #03d090.

We will describe each MMIX instruction both informally and formally. For
example, the informal meaning of ‘ADD $X,$Y,$2’ is “Set $X to the sum of $Y
and $Z”; the formal definition is ‘s($X) « s($Y) + s($Z)’. Here s(z) denotes the
signed integer corresponding to the bit pattern x, according to the conventions
of two’s complement notation. An assignment like s(z) + N means that z is to
be set to the bit pattern for which s(z) = N. (Such an assignment causes integer
overflow if N is too large or too small to fit in z. For example, an ADD will
overflow if 5($Y) + s($Z) is less than —263 or greater than 263 — 1. When we’re
discussing an instruction informally, we will often gloss over the possibility of
overflow; the formal definition, however, will make everything precise. In general
the assignment s(z) « N sets z to the binary representation of N mod 2™ where
n is the number of bits in «, and it signals overflow if N < —27~1 or N > 27-1,
see exercise 5.)

Loading and storing. Although MMIX has 256 different opcodes, we will see
that they fall into a few easily learned categories. Let’s start with the instructions
that transfer information between the registers and the memory.

Each of the following instructions has a memory address A obtained by
adding $Y to $Z. Formally,

A = (u(8Y) + u($Z)) mod 254 (5)

is the sum of the unsigned integers represented by $Y and $Z, reduced to a 64-bit
number by ignoring any carry that occurs at the left when those two integers are
added. In this formula the notation u(z) is analogous to s(z), but it considers «
to be an unsigned binary number.

LDB $X,$Y,$Z (load byte): s($X) + s(M;[A]).

LDW $X,$Y,$Z (load wyde): s($X) + s(M2[A]).

LDT $X,$Y,$Z (load tetra): s($X) « s(M4[A]).

LDO $X,$Y,$Z (load octa): s($X) + s(Ms[A]).

These instructions bring data from memory into register $X, changing the data
if necessary from a signed byte, wyde, or tetrabyte to a signed octabyte of the
same value. For example, suppose the octabyte Ms[1002] = M;[1000] is

M([1000]M[1001] ... M[1007] = #0123456789abcdef. (6)
Then if $2 = 1000 and $3 = 2, we have A = 1002, and

LDB $1,$2,$3 sets $1 < *000000000000 0045 ;
LDW $1,$2,$3 sets $1 «+— #*0000000000004567 ;
LDT $1,$2,$3 sets $1 < *0000000001234567 ;
LDO $1,$2,$3 sets $1 «— #*0123456789ab cdef.

1.3.1° DESCRIPTION OF MMIX 7

But if $3 = 5, so that A = 1005,

LDB $1,$2,83 sets $1 « #ffffffffffffffab;
LDW $1,$2,$3 sets $1 «— *ffff ffff ffff89ab;
LDT $1,$2,$3 sets $1 « *ffff ffff89abcdef;
LDO $1,$2,$3 sets $1 « #0123456789abcdef .

When a signed byte or wyde or tetra is converted to a signed octa, its sign bit
is “extended” into all positions to the left.

e LDBU $X,$Y,$Z (load byte unsigned): u($X) « u(M,[A]).

LDWU $X,8$Y,$Z (load wyde unsigned): u($X) + u(Mz[A]).

e LDTU $X,$Y,$Z (load tetra unsigned): u($X) «+ u(My[A]).

¢ LDOU $X,8$Y,$Z (load octa unsigned): u($X) « u(Ms[A]).

These instructions are analogous to LDB, LDW, LDT, and LDO, but they treat the

memory data as unsigned; bit positions at the left of the register are set to

zero when a short quantity is being lengthened. Thus, in the example above,

LDBU $1,%$2,$3 with $2 + $3 = 1005 would set $1 < #*00000000000000ab.
The instructions LDO and LDOU actually have exactly the same behavior,

because no sign extension or padding with zeros is necessary when an octabyte

is loaded into a register. But a good programmer will use LDO when the sign

is relevant and LDOU when it is not; then readers of the program can better

understand the significance of what is being loaded.

o LDHT $X,$Y,$Z (load high tetra): u($X) « u(Ma[A]) x 232.

Here the tetrabyte M4[A] is loaded into the left half of $X, and the right half
is set to zero. For example, LDHT $1,$2,$3 sets $1 +— *89abcdef 00000000,
assuming (6) with $2 + $3 = 1005.

e LDA $X,$Y,$Z (load address): u($X) «+ A.

This instruction, which puts a memory address into a register, is essentially

the same as the ADDU instruction described below. Sometimes the words “load
address” describe its purpose better than the words “add unsigned.”

STB $X,$Y,$Z (store byte): s(M[A]) « s($X).

STW $X,8Y,$Z (store wyde): s(Mz[A]) + s($X).

STT $X,3$Y,$Z (store tetra): s(My[A]) « s($X).

STO $X,8$Y,$Z (store octa): s(Mg[A]) « s($X).

These instructions go the other way, placing register data into the memory.
Overflow is possible if the (signed) number in the register lies outside the range

of the memory field. For example, suppose register $1 contains the number
—65536 = *£f££ £E££ ££££0000. Then if $2 = 1000, $3 = 2, and (6) holds,

STB $1,$2,$3 sets M[1000] < #0123006789abcdef (with overflow);
STW $1,$2,$3 sets Ms[1000] < #0123000089abcdef (with overflow);
STT $1,$2,$3 sets Mg[1000] + *£££f000089ab cdef ;
STO $1,$2,83 sets Mg[1000] + *££ff ff£f ££££0000.

8 BASIC CONCEPTS 13.1

STBU $X,$Y,$Z (store byte unsigned):
u(M;[A]) « u($X) mod 28.
STWU $X,$Y,$Z (store wyde unsigned):
u(M;z[A]) + u($X) mod 216,
STTU $X,$Y,$Z (store tetra unsigned):
u(M4[A]) ¢+ u($X) mod 232,
e STOU $X,$Y,$Z (store octa unsigned): u(Ms[A]) « u($X).
These instructions have exactly the same effect on memory as their signed
counterparts STB, STW, STT, and STO, but overflow never occurs.
e STHT $X,$Y,$Z (store high tetra): u(Ma[A]) « |u($X)/2%2].
The left half of register $X is stored in memory tetrabyte M4[A].
e STCO X,$Y,$Z (store constant octabyte): u(Ms[A]) +«~ X.
A constant between 0 and 255 is stored in memory octabyte Mg[A].

Arithmetic operators. Most of MMIX’s operations take place strictly between
registers. We might as well begin our study of the register-to-register opera-
tions by considering addition, subtraction, multiplication, and division, because
computers are supposed to be able to compute.
ADD $X,8Y,$Z (add): s($X) « s($Y) + s($2).
SUB $X,$Y,$Z (subtract): s($X) « s($Y) — s($Z).
MUL $X,$Y,$Z (multiply): s($X) « s($Y) x s($Z).
DIV $X,$Y,$Z (divide): s($X) « |s(8Y)/s(3Z)] [$Z #0], and
s(rR) + s(8Y) mod s($Z).
Sums, differences, and products need no further discussion. The DIV command
forms the quotient and remainder as defined in Section 1.2.4; the remainder goes
into the special remainder register rR, where it can be examined by using the
instruction GET $X, rR described below. If the divisor $Z is zero, DIV sets $X « 0
and rR « $Y (see Eq. 1.2.4(1)); an “integer divide check” also occurs.
® ADDU $X,$Y,$Z (add unsigned): u($X) « (u($Y) + u($2)) mod 254.
® SUBU $X,$Y,$Z (subtract unsigned): u($X) + (u(8Y) — u($2)) mod 254.
MULU $X,$Y,$Z (multiply unsigned): u(rH$X) « u($Y) x u($2). :
DIVU $X,$Y,$Z (divide unsigned): u($X) « [u(rD $Y)/u($Z)|, u(rR) «
u(rD 8Y) mod u($Z), if u($Z) > u(rD); otherwise $X « rD, rR « $Y.
Arithmetic on unsigned numbers never causes overflow. A full 16-byte product
is formed by the MULU command, and the upper half goes into the special himult
register TH. For example, when the unsigned number #9e3779b97f4a7c16 in
(2) and (4) above is multiplied by itself we get

rH + #61c8864680b583ea, $X « *1bb32095ccdd5led. (7

In this case the value of rH has turned out to be exactly 264 minus the original
number *9e3779b97£4a7c16; this is not a coincidence! The reason is that (2)
actually gives the first 64 bits of the binary representation of the golden ratio
¢! = ¢ — 1, if we place a binary radix point at the left. (See Table 2 in
Appendix A.) Squaring gives us an approximation to the binary representation
of 72 =1~ ¢~1, with the radix point now at the left of rH.

