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Abstract

This book is collection of some journal publications by the author with his collaborators
during 1980-1999. To develop theofetical simulation and inversion of microwave remote
sensing, this book presents some advarces on the theorics of vector radiative transfer in
random media, fully polarimetric -scattering of canopy surfaces, and scattering from
randomly rough surfaces. Theoretical modehng, numerical simulation, data validation and
parameter retrievals for space-borne microwave remote sensing, and computational methods
for scattering from complex objects are dlscussed

This book can be an useful reference for scientists in the radiophysics, Earth sciences,
especially in remote sensing of atmosphere, ocean and land surfaces, and applied physics. It
can also be used as a textbook for graduate students to study some frontier topics in
electromagnetic scattering and remote sensing.



I

illlg

ABhEEH 1980 FEAEEMEHE LHREMIT)BOER A EREGAEE B AEEHA 20 4
F L HASEEAENI KBRS RIS SGEBT K. A0S 7 H GRS MBEHN FUR B a5
EEER. BREFRASRAEGTER. MyUERE S ER. MR ER S HE
B, EREBRBERIESSHRE. S0 BB IS S BB 7 5 E £
REE. WEFEAIFERTR, BERNRXKREHEL, BHIRTEHAEREASEFAE.

AP NNE, BEITE—NRE. REJBHER(VRDER ZH 5T E A0 SR AR 8 3
#EJE-Stokes RE L REST SEEMEFRNER. F—Fie THEMEESRIENSRKSEK. BIK.
LR Bhh 3% B RMNEK VRT Hig, Wi T & MR A RIS MR BENAN T H KBS 1
VRT, 45BN R VRT i, URESEMEGEREE S LMRBEE LS RBHEH
A EAEAE R T

BARILAEEIRSAR) ERAME S SGRARMRR, T BRMRHSRAES BB
R, AR B 5 R v RE B A AN ERE B F_FE R TEL O RHE
BHENEZ R, LS. ESERAERRTE R -F 2R BUR Stokes K E #) Mueller i FEAE R K FIHK
AT AR AL B BB ¥4 Mueller JEPEARFIIEFIA T SAR BRE &S T THERER KR
HAF U E ST R, LR SAR BB N,

ERuhFn H8E. ¥, AEREVURENEE . 3 =810 T VUK I & B U S R R 400
H I, 3R H R B B A T 0 A MR AL I B ) B SR AR 10 . AL A VIR A TR S T A A AR
RIS S R E S S8 E, UREBHRGEETHNA.

FIUEFHE T BERREN N RS FEER FRFETHOELS, K& MEEETIEH & B
MAEMNA VRT BIEHEBRBIL . ZETTR T HEAKES 0 iR RN TS AN R E SR
FL TR RIS, TR ESNA.

BREITR TS5 EREBEOREEURNERMEEERIENTIR, RET2HRMERRE
. UKEL UK. R WL M) B RMBREEIITT ( SSMA ) FBREE bR E FIGAE T
W, Ve T EEh R ARG AR E . 5B SR REERCF TR EHRKEN)E T 2mAL
BRSO T o 48 R M S BRI R A B R BB AR R T . S0 R s . R EASFIE M IR A S
B, RESUENRERIFNHEE, T8RN RIE LSRR &SI Y E K IS8
mE R A RS LRI AR L. RHTEEMEKE. A THEMgE. BEEE B E
LRI, U X BBEN TR AE RENTIH S TR,

BEANE TR E RN RS ER SHE RE A, BREMYEERNIEREA TR SR
ST T SERESE AR, FETRE SN AN BIEH TS FESRHR Green EEHHIER,
$2 04 AR AR DS B R AR 02 B3 TR IR BIREA UK RE 0 LSO BARBITTE: U R =440 0712
IR BAEH 2 R VRS

MEZERIEGHRT LA, HREBATHIFEEXRERBFESZRSHRBFERM. FEERF
P KHERESE. EEXHEN,. AEEEZEEXETETHEESTMEEEE.

“UR ISR, BEMEHEIT o EHELERZEF EEREREBEN S, 5R
EN GERRERFEREN —BAIMERRMEHBRLTARARRIE. BEBRSHEL: “WT
RIS, EEWEORY. EMERINERRES, BHEAEHR” .



Introduction

This book collected some journal papers published by the author with his collaborators
during 1980-1999 whilst he was a graduate student for Ph.D. degree in the Massachusetts
Institute of Technology, USA and till now he holds professorship in the Fudan University,
China. Most of these papers were chosen from the English journals, it should be convenient
to the readers in both China and abroad.

This book summarizes the contributions by the author with his collaborators on the
areas such as electromagnetic wave scattering, propagation in random media, modeling and
simulation for quantitative microwave remote sensing, data validation and parameters
retrieval from measurements of satellite-borne remote sensing,, and computational
electromagnetics of complex media.It contains six chapters. Each chapter is focus on one
topic. The first chapter discusses the vector radiative transfer (VRT) theory for the study of
multiple scattering and radiative transfer of polarized electromagnetic intensity-Stokes vector.
The VRT theory for modeling of natural media, such as atmospheric precipitation, sea ice,
vegetation canopy and land surfaces, etc., and numerical simulation for space-borne
microwave remote sensing are developed. The VRT theory for strongly fluctuating,
anisotropic random media, and high-dimensional VRT equation are also discussed in this
chapter.

Advance of polarimetric measurement and imagery of SAR technology has greatly
promoted study of fully polarimetric scattering of the Earth surfaces. Chapter 2 presents
simulation of the Mueller matrix solution for multi-layered, multi-components, and non-
uniformly oriented, nonspherical scatterers for modeling canopy surfaces. The theory of
coherency matrix, eigenvalues and entropy are developed, and are compared with SAR
images.

Chapter 3 discusses scattering from randomly rough surface. High-order scattering
from rough surface and shadowing function are discussed. Angular enhancement of
backscattering is analytically derived. To model sea surface driven by strong winds, a
composite model of foam scatterers with two-scale surface approximation is developed, and
is applied to active and passive remote sensing of sea surface winds.

Chapter 4 is, especially, devoted to strong fluctuation theory. Scattering coherency
from strongly fluctuating media, and dense scatterers are studied. It is an important progress
to conventional VRT where independent scattering is usually assumed. This theory is applied
to remote sensing of snow fields.

Chapter 5 contains a lot of simulation, data validation and parameter retrieval from
satellite-borne remote sensing, such as DMSP SSM/I. Theoretical simulation, measurements
and data from remote sensing observation are linked to quantitatively invert information for
the Earth surfaces, e.g. vegetation canopy, snow, sea ice, sea surface winds, sand, flooding,
cte., and spatial and temporal variations. Correlation of active and passive remote sensing 1s
demonstrated. Some novel retrieval algorithms such as meshed graph, ANN(artificial neural
network) method, statistics of spatial auto-correlation etc. are presented. A novel system of
combined scatterometer and radiometer at X band and fields experiments are introduced.

Chapter 6 discusses computational electromagnetics of complex media. For example,



the T-matrix solution for collective scattering of clustered non-spherical scatterers, the
effective dielectric property of particulate media, electromagnetuics of chiral media and
dyadic Green’s function, the broadened width of angular correlation function on non-
memorial line to detect a target situated over rough surface, the fast multi-pole method of
volume integral equation are discussed.

The author greatly appreciates the support from the Divisions of the Earth Science and
Information Science of the National Natural Science Foundation of China during his research
works in the Fudan University. He is very grateful to his advisors, collaborators and students
for their contributions.
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Theory of Vector Radiative Transfer in Random Media
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1.1

Passive and active remote sensing of atmospheric

precipitation

Y. Q. Jinand J. A. Kong

Both passive and active remote sensing of atmospheric precipitation are studied with the vector radiative
transfer equations by making use of the Mie scattering phase functions and incorporating the raindrop-size

distributions.

For passive remote sensing we employ the Gaussian quadrature method to solve for the

brightness temperatures. For active remote sensing an iterative approach carrying out to the second order
in albedo is used to calculate for the bistatic scattering coefficients, the backscattering cross sections/unit
volume, and the interchannel cross talks. The calculated results are plotted as a function of rainfall rates
and compared to various available experimcital data. The theoretical model is easily applied to the remgte
sensing of aerosol particles, smoke, fog, and haze at infrared and visible frequencies.

I. Introduction

Electromagnetic wave scattering at visible, infrared,
and microwave frequencies by a turbid atmosphere
(precipitation, cloud, smoke, haze, fog, etc.) was studied
extensively for both passive and active remote sens-
ing.}1® The scatterers are generally modeled as
spherical Mie scatterers, and the radiative transfer (RT)
equations are applied. In passive probing of rain rates
the scalar RT theory has been used.34 In active remote
sensing of the atmosphere the single-scattering as-
sumption is often used.” Inscalar RT approaches the
assumed Gaussian phase function® is proposed, which
is based on small angle approximation.

In this paper we apply the vector radiative transfer
equation to study both the passive and active remote-
sensing problems. The Mie scattering phase function
matrix is used and averaged over the raindrop-size
distributions to solve for the brightness temperatures
and the scattering coefficients. We use the Gaussian
quadrature method to solve for the brightness tem-
peratures in passive remote sensing. In active remote
sensing all four Stokes parameters (I,,[;,U,V) are
employed. Every term of the phase function matrix is
expressed as a truncated series. We use the iterative

The authors are with MIT Department of Electrical Engineering
& Computer Science, Cambridge, Massachusetts 02139.

Received 2 February 1983.

0003-6935/83/172535-11$01.00/0.

© 1983 Optical Society of America.

approach to the second order in albedo to calculate for
the backscattering cross section, bistatic scattering
coefficients, and interchannel cross talk.8 Both the
passive and active remote-sensing results are compared
with experimental data. The same technique can be
applied to the remote probing of atmospheric aerosol,
cloud, smoke, haze, and fog at infrared or optical
frequencies.

li. Theory for Passive Remote Sensing

Consider a precipitation layer consisting of spherical
raindrops with permittivity ¢;, which is calculated by
the Debye formula.l® The layer consists of a distribu-
tion of different drop sizes and extends fromz =0 to 2
= —d (Fig. 1). Medium 2 is assumed homogeneous.
The radiative transfer equations inside the rain layer
take the following forms:

d [L,0.2)] _ 1,0,2)
daz 1. 0.2) = (Koa + Kag)CTl (Keq + Kug) 1,(0,2)
* . V) Wh)[L(#,2)
+ {7 ao’ sine’ . 1
.j:) sin” |, (h,h’)] lI;,(O’,z) )

where I,(0,2) and I,(0,z) are the specific intensities for
the vertical and horizontal polarizations, 7', is the
temperature of the raindrops and the atmosphere, C =
K/\2 with K denoting the Boltzmann constant and A
the free-space wavelength, k.qy = K;q + Kqq is the ex-
tinction coefficient of raindrops, x,q and k.4 are the
scattering and absorption coefficients, k., is the ab-
sorption coefficient of atmospheric gases (water vapor
and oxygen), 0 < 8 < m, and (v,v’), (v,h’), (h,v’), and
(h,h’) are the Mie scattering phase functions.!

We assume an ocean or land background with tem-
perature Ts. The boundary conditions are, for 0 < # <
w/2,atz2 =0

1 September 1983 / Vol. 22, No. 17 / APPLIED OPTICS =3
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Fig. 1. Geometrical configuration of the problem.
I,(x — 6,0)
=0 2
[Ih(f - 6,0) @
and atz = —d
Iu(0.—d)] [rv(ﬂ)lu(r ~6,~d) ll —ry(®)
= + CT ? 3
llh(o,nd) r (6)h (x = 8,~d) h-rno ®

where r,, (6) and r, (0) are, respectively, the reflectivities
for the vertical and horizontal polarizations.?

The brightness temperatures as measured by radi-
ometers are simply

Tao| _ 1 [1,(6,0)

TBh] C [I;.(0,0) (4)
atz =0and

TBu] _1 [I.,(vr - 8,~d) o
Tarl ClUp(x —6,—d)

at z = —d. The task is to solve the radiative transfer
Eqgs. (1) subject to the boundary conditions (2) and
(3)

Numerical solutions are facilitated by replacing the
integral in Eq. (1) by Gaussian quadratures!.”:

d [1,6:.2)] _ o(6.2)
"z lihwm) (Ko + xag)CT1 = (kea + xag) |, 9. 2)
N (vi,v;) (Ui,hj)] I, (0;,2)
+ N 3 6
N [(h,-,vn(hm;) 1(0;,2) ©

where i = %1,...,+N, u; = cosf;, and a; are the
Christoffel numbers. In our calculation we use N =
6.

In Figs. 2 and 3 we illustrate the brightness temper-
atures calculated for an ocean background for a pre-
cipitation layer with 4-km thickness. The Marshall-
Palmer distribution is used to average over the rain-
drop-size distributions. We see that both Tg, and Tgs
are cold at a small rain rate due to the cold ocean
Jbackground. As the rain rate increases, the brightness

* 4+ APPLIED OPTICS / Vol. 22, No. 17 / 1 September 1983
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Fig. 2. Brightness temperature vs rain rate at 19.35 GHz. Data
given in Ref. 3.
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Fig. 3. Brightness temperature vs rain rate at 37 GHz.

temperature increases due to emission from the rain-
drops. However, compared with the calculation with-
out taking into account the Mie scattering effects as
shown with dashed lines, the scattering induces dark-
ening effects, especially at higher rain rates. In Fig. 2
we show that the rainfall model calculations are in good
agreement with data collected by Wilheit et al.3 Dots
are from simultaneous measurements of the brightness
temperatures over ocean by the Nimbus 5 ESMR and
the rain rates by the WSR-57 meteorological radar.
Crosses are inferred from ground-based measurements
of the brightness temperatures and direct measure-
ments of rainfall rates.

l. Theory for Active Remote Sensing

The atmospheric precipitation is modeled as a layer
of spherical Mie scatterers with permittivity ¢; and ra-
dius a governed by the Laws-Parson distribution, which
has been used in most studies of active probing of



rainfall. For active remote sensing the vector radiative
transfer equation takes the form!

cosf ;—T(ﬂ,d;,z) = —ko1(8,8,2) — x,1(8,0,2)

V4
x 4 /7 2’ 7 07 7 7 /
+ J; do’ sind fo do'P(0,6:6",¢") - 164" 2), %)

where the specific intensity I contains all four Stokes
parameters

1, 0,¢,2)

16.6.2) = I,(0,6,2) ’ ®
Ub,¢,2)

Vid,¢,2)
P(6,0;0,¢") is the scattering phase-function matrix, and
k., and «; are the absorption and scattering coefficients
calculated by the Mie theory incorporating the Laws-
Parsons size distribution for atmospheric precipita-
tions.

For a plane wave propagating in the direction 8,;,¢,;
and impinging on a precipitation layer of thickness d
we write the boundary conditionsatz =0and z = —d
as, for 0 < 0 < w/2,

T — 0,0,z = 0) =1,8(cosd — cosll,;)o(¢ — do:), (9a)
10,0,z = —~d) = 0. (9b)

The bistatic scattering coefficient is defined as the ratio
of scatterer power of polarization 8/unit solid angle in
the direction of 8, and ¢; to the incident power of po-
larization in the direction 8,; and ¢,; averaged over 47
rad:

I,4(05,9,) cosb,

10
1o.q coslo, 10

‘Yﬁuws 0s300,,90) = 47

where «,8 = v or h denoting vertical polarization or
horizontal polarization, respectively. In the back-
scattering direction as 8; = 0,; and ¢,s = ® + ¢,;, the
backscattering cross section/unit area is defined as

Ugn(am) = Cosam’Yﬂn(om T+ ¢m;oon¢m)
Ioiﬁ(aon’r + ¢oi)
loa

The backscattering cross section/unit volume og, is
obtained by dividing o}, by the layer thickness d.
Another parameter that is of importance in the
communications applications is the cross talk CX de-
fined as the ratio of the power received through the
offset channel to that through the direct channel. The
total power in the line-of-sight direct channel is equal
to the sum of the coherent and incoherent intensities

= 47 cosb,, (11)

P, = I, exp(—k.d secf,) + j; 4T, (x — 0,6")

~ I, exp(—«.d secd;) + L, (x — 0;,¢,,—d) - Q. (12)

The scattered power as received by the offset channel
is

p, = f AL, (w = 6,,6,) = I,(x = 0,,6,,~d) - 2, (13)
Q

where it is assumed that I, is uniform over a very narrow

radiant angle €0, of the antenna. The cross talk is de-
fined as

CX=I—>£= Iy (w = 05,¢5,—d) - Q, .

P, I, exp(—«.d sech,) + I;(w — 8,,¢,,—d) - Q,
Notice that!! Q, ~ 7 (0;,/2)2 and 0, ~ ®2/G is the
half-power beamwidth of the receiving antenna with
gain GG, where G is assumed to be 40 dB in our calcula-
tions.

(14)

IV. Rerative Approach

A. lterative Procedure

When absorption is dominant over scattering, we can
obtain closed-form solutions by using an iterative ap-
proach using the albedo (x;/«.) as the small parameter
to carry out perturbation analysis. First, we break up
the intensities in the scattering layer into backward
propagating intensities I(6,4,2z) and forward propa-
gating intensities I (7 — 6,¢,2) for 0 <8 < 7/2. We then
incorporate the boundary conditions to obtain the fol-
lowing integral equations:

1(0,¢,2) = sech exp(—«.z sech) J:; dz’ exp(kez’ secl)
/2 2x )
x dol M )/ /| -0 / . 7 / ’
j; sinf j; d¢'{P(8,6;0",¢) - 1(8,9',2")

+P0.oix — 6,¢") I(x = 0,627},
I(x = 0,6,2) = 1,;8(cosb, ~ cosbl,;)5(¢, — b0,) exp(k.z sech)

(15a)

0 =/2
+ sech exp(x.z sech) f dz’ exp(—«.z’ sech) J; db’ sinb’
2x
X f 7 d6 (Px = 0,68/ -160'4.2) + Plm — 0,637 - 0,6

xI(x = 0,¢',2°)), (15b)
where the first term of Eq. (15b) is the incident intensity
in the 8,;,¢6,; direction. The zeroth-order solution takes
the form

I(o)(6’¢vz) = 01 (163)
7(0)(1 - 0’¢vz) = Ioia(cosao - COsaol‘)

X 8(¢o = ¢oi) explk.z sech). (16b)
The first-order solutions are found to be
10(8,4,2) = exp(~«.z sech) secdP(B,d;x — 0;,0) - I

x explx.z(secd + sech;)] — exp[—«.d(sech + sech,)] , 17a)

ke (sech + sech;)

I (xr — 8,4,2) = —explez sech) secdP(r — 0,8;m — 0;,8:) - I

v 1 — exp[—«.z(secd — sect;)] . (17h)

ke (secl — sech;)
The corresponding first-order scattered intensities are,
in region 0,
T80 ,00s) = TV(8,,0,,2 = 0)
= 3ecl, P(0s,00:7 — 0i,0)
— exp{—«.d(sech, + sech,)]

1
X T, 18a)
o ke (secl, + sec;) (
and in region 2
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. T&”(W - 0‘2n¢2s) = T(l)("r - 08)¢syz = _d)
= —exp(—«.d secl;) secl,
p(1r = O5,0s5,m — 0,,¢,) - 70;
1= explked(secl; — secd,))

Ke(secl; — sect,) {18h)

It is noted that, in the first-order solutions, the cross-
polarization contributions are zero, and we must carry
the iterative process to at least the second order to ac-
count for the depolarization effects.

The second-order solutions in region 0 in the direction

(dos, 7 + ¢os) are

/2
TP (Bo0,7 + dos) = sechy J; b’ sind’

2x
x / 8 s; lY /
J 1Pl + 0407 4)
XA (0,6 + Blb,m + pgim — 0/,0) - Ax(0,9)),  (19a)
where
_ 0
A(#,9) = f . dz’ explkcz’ secd;)TNE ¢',2")

1
ke (sect’ + sech,)
X {Do(8,,0:) — D1(65,8') exp[—«.d(sect’ + sech,)]},

= secl’ - P(8,¢";7 — 0;,¢) - Toi -
(19b)
_ ¢

Ax0,0)) = J‘ 4 dz’ exp(k.z’ sech;) exp(x.2z’ sect’)

X sechd’ - P(x — 0.¢":7 — 0;,¢;)

-1

% 1y o ———————. {1 - —Ke2' " — sech;
Kko(sech’ — sech,) {1 — expl—x.2'(sect’ ~ sechi)])

-1

- al.p —0,, ,; _0“ . ‘Toi'———'—-——"
secf’ - P(r — 0.¢';w ¢:) K. (sect” — secf,)

X [D2(0;,8') — D2(8,,0.)], (19¢)

— exp[—«k.d{sech; — secl,)] (19d)

D1(0,,6,) =~

ke(sech; — sech,)
— expf[—«.d(sech, + sech;)]

19
Ke(secl, + sech,) (19¢)

Da(8,8,) = >

B. Backscattering and Bistatic Scattering Coefficients

We consider a vertically polarized incident wave and
calculate the vertical and horizontal polarized scattered
Intensities to the second order in the iterative process.
Using Eq. (19) we obtain

=/2 2r
752.),,(303»1 + $os) = Lo, sect - .I; df’ sinf’ ‘I; d¢’ sect’

X {[P11(fs, 7 + ¢5:0",¢") - K1 (8,¢) + P1alls,70 + 37 — 8',8))

X L1(8,¢)] + [P12(8s,7 + 64;0",¢') - K2(0,6")

+ Pia(,,7 + ¢y5m — 0,8) - Lo(6',0")]

+ [P1a(0,, 1 + ¢4;0",¢") » Ka(0',¢") + P1a(0,,% + ¢537 — 6',¢)

X L3(0,0")] + [P14(05,7 + ¢5;0°,0") - Ka(0',0)

+ P1al8y,7 + dgim — 0,¢") - La(0",0)]}, {20)

where

1
ke (sect’ + sech;)

X {D2(8,,0,) — D1(6,,8") exp[—«cd(sect’ + sech,)]},

R(0',¢") = Pul@,¢'sm — 0,,6:)

(21a)
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1

Ko(#,¢'} = Pay(8',¢"s7 — 8,,$,) ——————
2. a(d' s d))xe(sec9’+sec€,)

X {D(68,.8,) — D1(6, &) expl—r.d(sect + sect,)}}, 21b)
1
K3(#,¢) = P50 ' ~ 0,,¢,) ——————
3(#,¢") 310 ¢ ) ke (sech’ + sech,)
X {Dz(as,e;) - D1(03,0’) exp[""ed(secol + Seca‘)]l’ (21C)
1
Ky(0',¢") = Pa0,¢'im = bi,¢0) ————————
4(0',9) = Py(@\¢"i7 ) ke (sect’ + sech,)
X |D2(0s10i) — Dl(as 0) exp[—l(gd(seco' + secﬂ.)]!. (21d)
-1
Li(0',¢) = Pu(r = 0,¢5w = 6,,0) - ——————
16, = Pu(x = ,¢'sm = 6,0,) ke (sech’ — sech,)
X [D2(6,,6') — D2(8,,8,)], (222)
-1
La(0',¢) = P(m = 0',0'5m = 6,,0) » ————=
20',¢") = Pu(w o5 %) ke (sectd’ — sech;)
X [D(6,,8') — D2(8,.6,)], @2b)
-1
Ly(0¢') = P -0 — b)) —
o84 = Pulm = .¢'sm ~ i) - —
X [Da(0,,8) — Da(6.60)), (22)
-1
L0',¢)) = Palr — 0'¢"sw — 0;,¢,) - —————
(0,8 a(r ¢'ix ) ko (secd’ ~ secl;)
X [Dz(ono)) - D2(08105)}' (22d)

P, (0,6,0,¢") is the term of P(8,¢:0",¢") (ij = 1,2,3,4). Its
expressions are given in Appendix A. Note that as 8

—0;,

-1 1
lim ———————[Dy(8,.0") ~ D»(0,.6;)] = ——————
0'1—1-1419. ke {secl’ — sech,) (Dl ) al 2 ke (secl, + sect;)

X {Dy(8,.8:) — D1(8,,8,) - exp[—«.d(secB, + sech,)]}. (23)
Thus we can obtain the backscattering cross section

18,07 + ¢,) + IS, 6,7 + ¢;)
IDIU '

0, = 47 cosly; (24)
and we can obtain the horizontal polarized scattered
intensities

= x/2 2x
It(z%)h(oan"r + @os) = Louw secty - ﬁ db’ sinf’ ‘I; d¢’ sect’

X {[Pg1(fs,7 + ¢4530",¢") - Ki(0',¢) + Por(0s,7 + ;7 — 0,¢)

X Ly(6,¢)] + [P2alf,,7 + o638 ,0") - Ko(#',0')

+ Pos(l,,7 + dg37 — 6,8} - Lot#',¢")]

+ [Pas(Bs,7 + ¢430",8") - Ka(0,¢") + P2a(8,,m + 6057 — 67,¢")

X L3(0",¢")] + [P24(0s,7 + ¢5;6",0") - K4(6',¢)

+ Pog(s,® + ¢;7 — 07,0 - Lo(8",9")]} (25)
Thus the bistatic scattering coefficient yop, (85,7 +
®os; 00 ,00i) In region O is
€080,1 551 (0,.¢5)

c088,:1oiy
= 4 sech, - Poy(0,,7 + ¢o;7 — 0;,6,) - Dal8,,0;)

'Yo)w(eos bosiboi i) = 4T

/2
+ 4 sech, j; db’ sind” sect’ - [F1(8,.0) + Fo(0..8)

+ Fa(0,,0") + F4(6,,0)), (26)
where



