中国科学院中国孢子植物志结霜委员会 编辑 第二十五卷 霧 直 目(三) 主剑云 主编 中国科学院中国孢子植物志编辑委员会 编辑 # 中国真菌志 第二十五卷 锈菌目(三) 庄剑云 主编 中国科学院知识创新工程重大项目 国家自然科学基金重大项目 (国家自然科学基金委员会 中国科学院 国家科学技术部 资助) 科学出版社 北京 #### 内容简介 本卷是《中国真菌志 第十卷 锈菌目(一)》和《中国真菌志 第十九卷 锈菌目(二)》的续篇,记述了我国柄锈菌科单胞锈菌属已知的 108种。每种有形态特征描述、寄主及分布,附孢子线条图 94幅,并附参考文献及锈菌和寄主植物的汉名索引和学名索引。这是作者多年来对我国锈菌进行区系调查和分类的部分研究成果。 锈菌是常见的高等植物专性寄生菌,是多种经济植物重要的致病菌。植物锈病的准确诊断有赖于菌的准确鉴定。本书可供菌物学科研人员、植物保护、森林保护和植物检疫工作者以及大专院校生物系和植物保护系的师生参考。 中国科学院中国孢子植物志编辑委员会 编辑 #### 中国真菌志 第二十五卷 #### 锈菌目 (三) 庄剑云 主编 责任编辑 韩学哲 范淑琴 霍春雁 #### 斜学出版社 出版 北京东黄城根北街16号 邮政编码:100717 http://www.sciencep.com #### 中国研学院印刷厂印刷 科学出版社发行 各地新华书店经销 2005年8月第 - 版 开本: 787×1092 1/16 2005年8月第一次印刷 印张: 13 1/2 印数: 1-800 字数: 300 000 ISBN 7-03-014554-2 定价: 78.00元 (如有印装质量问题,我社负责调换〈科印〉) #### 中国孢子植物志第四届编委名单 (1998 年 4 月) (右上角有 * 者为常委) 主 编 曾呈奎* 常务副主编 魏江春* 副 主 编 余永年* 吴鹏程* 毕列爵* 编 委 (以姓氏笔画为序) 王全喜 白金铠 田金秀* 刘 波 庄文颖* 庄剑云* 齐雨藻 齐祖同* 朱浩然 应建浙* 吴继农 邵力平 陈灼华 陈健斌* 陆保仁 林永水 郑柏林 郑儒永* 姜广正 赵震宇 施之新 胡人亮 胡征宇 胡鸿钧 高 谦 夏邦美 谢树莲 臧 穆 黎兴江 ### 序 中国孢子植物志是非维管束孢子植物志,分《中国海藻志》、《中国淡水藻志》、《中国真菌志》、《中国地衣志》及《中国苔藓志》五部分。中国孢子植物志是在系统生物学原理与方法的指导下对中国孢子植物进行考察、收集和分类的研究成果;是生物多样性研究的主要内容;是物种保护的重要依据,对人类活动与环境甚至全球变化都有不可分割的联系。 中国孢子植物志是我国孢子植物物种数量、形态特征、生理生化性状、地理分布及 其与人类关系等方面的综合信息库;是我国生物资源开发利用、科学研究与教学的重要 参考文献。 我国气候条件复杂,山河纵横,湖泊星布,海域辽阔,陆生和水生孢子植物资源极其丰富。中国孢子植物分类工作的发展和中国孢子植物志的陆续出版,必将为我国开发利用孢子植物资源和促进学科发展发挥积极作用。 随着科学技术的进步,我国孢子植物分类工作在广度和深度方面将有更大的发展,对于这部著作也将不断补充、修订和提高。 中国科学院中国孢子植物志编辑委员会 1984年10月·北京 ## 中国孢子植物志总序 中国孢子植物志是由《中国海藻志》、《中国淡水藻志》、《中国真菌志》、《中国地衣志》及《中国苔藓志》所组成。至于维管束孢子植物蕨类未被包括在中国孢子植物志之内,是因为它早先已被纳入《中国植物志》计划之内。为了将上述未被纳入《中国植物志》计划之内的藻类、真菌、地衣及苔藓植物纳入中国生物志计划之内,出席 1972 年中国科学院计划工作会议的孢子植物学工作者提出筹建"中国孢子植物志编辑委员会"的倡议。该倡议经中国科学院领导批准后,"中国孢子植物志编辑委员会"的筹建工作随之启动,并于 1973 年在广州召开的《中国植物志》、《中国动物志》和中国孢子植物志工作会议上正式成立。自那时起,中国孢子植物志一直在"中国孢子植物志编辑委员会"统一主持下编辑出版。 孢子植物在系统演化上虽然并非单一的自然类群,但是,这并不妨碍在全国统一组织和协调下进行孢子植物志的编写和出版。 随着科学技术的飞速发展,人们关于真菌的知识日益深人的今天,黏菌与卵菌已被从真菌界中分出,分别归隶于原生动物界和管毛生物界。但是,长期以来,由于它们一直被当作真菌由国内外真菌学家进行研究;而且,在"中国孢子植物志编辑委员会"成立时已将黏菌与卵菌纳入中国孢子植物志之一的《中国真菌志》计划之内并陆续出版,因此,沿用包括黏菌与卵菌在内的《中国真菌志》广义名称是必要的。 自"中国孢子植物志编辑委员会"于1973年成立以后,作为"三志"的组成部分,中国孢子植物志的编研工作由中国科学院资助;自1982年起,国家自然科学基金委员会参与部分资助;自1993年以来,作为国家自然科学基金委员会重大项目,在国家基金委资助下,中国科学院及科技部参与部分资助,中国孢子植物志的编辑出版工作不断取得重要进展。 中国孢子植物志是记述我国孢子植物物种的形态、解剖、生态、地理分布及其与人类关系等方面的大型系列著作,是我国孢子植物物种多样性的重要研究成果,是我国孢子植物资源的综合信息库,是我国生物资源开发利用、科学研究与教学的重要参考文献。 我国气候条件复杂,山河纵横,湖泊星布,海域辽阔,陆生与水生孢子植物物种多样性极其丰富。中国孢子植物志的陆续出版,必将为我国孢子植物资源的开发利用,为我国孢子植物科学的发展发挥积极作用。 中国科学院中国孢子植物志编辑委员会 主编 曾呈奎 2000年3月 北京 ### Foreword of the Cryptogamic Flora of China Cryptogamic Flora of China is composed of Flora Algarum Marinarum Sinicarum, Flora Algarum Sinicarum Aquae Dulcis, Flora Fungorum Sinicorum, Flora Lichenum Sinicorum, and Flora Bryophytorum Sinicorum, edited and published under the direction of the Editorial Committee of the Cryptogamic Flora of China, Chinese Academy of Sciences (CAS). It also serves as a comprehensive information bank of Chinese cryptogamic resources. Cryptogams are not a single natural group from a phylogenetic point of view which, however, does not present an obstacle to the editing and publication of the Cryptogamic Flora of China by a coordinated, nationwide organization. The Cryptogamic Flora of China is restricted to non-vascular cryptogams including the bryophytes, algae, fungi, and lichens. The ferns, a group of vascular cryptogams, were earlier included in the plan of *Flora of China*, and are not taken into consideration here. In order to bring the above groups into the plan of Fauna and Flora of China, some leading scientists on cryptogams, who were attending a working meeting of CAS in Beijing in July 1972, proposed to establish the Editorial Committee of the Cryptogamic Flora of China. The proposal was approved later by the CAS. The committee was formally established in the working conference of Fauna and Flora of China, including cryptogams, held by CAS in Guangzhou in March 1973. Although myxomycetes and comycetes do not belong to the Kingdom of Fungi in modern treatments, they have long been studied by mycologists. Flora Fungorum Sinicorum volumes including myxomycetes and comycetes have been published, retaining for Flora Fungorum Sinicorum the traditional meaning of the term fungi. Since the establishment of the editorial committee in 1973, compilation of Cryptogamic Flora of China and related studies have been supported financially by the CAS. The National Natural Science Foundation of China has taken an important part of the financial support since 1982. Under the direction of the committee, progress has been made in compilation and study of Cryptogamic Flora of China by organizing and coordinating the main research institutions and universities all over the country. Since 1993, study and compilation of the Chinese fauna, flora, and cryptogamic flora have become one of the key state projects of the National Natural Science Foundation with the combined support of the CAS and the National Science and Technology Ministry. Cryptogamic Flora of China derives its results from the investigations, collections, and classification of Chinese cryptogams by using theories and methods of systematic and evolutionary biology as its guide. It is the summary of study on species diversity of cryptogams and provides important data for species protection. It is closely connected with human activities, environmental changes and even global changes. Cryptogamic Flora of China is a comprehensive information bank concerning morphology, anatomy, physiology, biochemistry, ecology, and phytogeographical distribution. It includes a series of special monographs for using the biological resources in China, for scientific research, and for teaching. China has complicated weather conditions, with a crisscross network of mountains and rivers, lakes of all sizes, and an extensive sea area. China is rich in terrestrial and aquatic cryptogamic resources. The development of taxonomic studies of cryptogams and the publication of Cryptogamic Flora of China in concert will play an active role in exploration and utilization of the cryp-togamic resources of China and in promoting the development of cryptogamic studies in China. C. K. Tseng Editor-in-Chief The Editorial Committee of the Cryptogamic Flora of China Chinese Academy of Sciences March, 2000 in Beijing ## 《中国真菌志》序 《中国真菌志》是在系统生物学原理和方法指导下,对中国真菌,即真菌界的子囊菌、担子菌、壶菌及接合菌四个门以及不属于真菌界的卵菌等三个门和黏菌及其类似的菌类生物进行搜集、考察和研究的成果。本志所谓"真菌"系广义概念,涵盖上述三大菌类生物(地衣型真菌除外),即当今所称"菌物"。 中国先民认识并利用真菌作为生活、生产资料,历史悠久,经验丰富,诸如酒、醋、酱、红曲、豆豉、豆腐乳、豆瓣酱等的酿制,蘑菇、木耳、茭白作食用,茯苓、虫草、灵芝等作药用,在制革、纺织、造纸工业中应用真菌进行发酵,以及利用具有抗癌作用和促进碳素循环的真菌,充分显示其经济价值和生态效益。此外,真菌又是多种植物和人畜病害的病原菌,危害甚大。因此,对真菌物种的形态特征、多样性、生理生化、亲缘关系、区系组成、地理分布、生态环境以及经济价值等进行研究和描述,非常必要。这是一项重要的基础科学研究,也是利用益菌、控制害菌、化害为利、变废为宝的应用科学的源泉和先导。 中国是具有悠久历史的文明古国,从远古到明代的4500年间,科学技术一直处于 世界前沿,真菌学也不例外。酒是真菌的代谢产物,中国酒文化博大精深、源远流长, 有六七千年历史。约在公元 300 年的晋代,江统在其《酒诰》诗中说:"酒之所兴,肇 自上皇。或云仪狄,又曰杜康。有饭不尽,委之空桑。郁结成味,久蓄气芳。本出于 此,不由奇方。"作者精辟地总结了我国酿酒历史和自然发酵方法,比之意大利学者雷 蒂(Radi, 1860)提出微生物自然发酵法的学说约早 1500 年。在仰韶文化时期(5000~ 3000 B. C.),我国先民已懂得采食蘑菇。中国历代古籍中均有食用菇蕈的记载,如宋 代陈仁玉在其《菌谱》(1245年)中记述浙江台州产鹅膏菌、松蕈等11种,并对其形 态、生态、品级和食用方法等作了论述和分类,是中国第一部地方性食用蕈菌志。先民 用真菌作药材也是一大创造,中国最早的药典《神农本草经》(成书于 102~200 A. D.) 所载 365 种药物中,有茯苓、雷丸、桑耳等 10 余种药用真菌的形态、色泽、性味 和疗效的叙述。明代李时珍在《本草纲目》(1578)中,记载"三菌"、"五蕈"、"六 芝"、"七耳"以及羊肚菜、桑黄、鸡噁、雪蚕等30多种药用真菌。李氏将菌、蕈、芝、 耳集为一类论述,在当时尚无显微镜帮助的情况下,其认识颇为精深。该籍的真菌学知 识,足可代表中国古代真菌学水平,堪与同时代欧洲人(如 C. Clusius, 1529~1609) 的水平比拟而无逊色。 15世纪以后,居世界领先地位的中国科学技术,逐渐落后。从 18世纪中叶到 20世纪 40年代,外国传教士、旅行家、科学工作者、外交官、军官、教师以及负有特殊任务者,纷纷来华考察,搜集资料,采集标本,研究鉴定,发表论文或专辑。如法国传教士西博特(P. M. Cibot) 1759年首先来到中国,一住就是 25年,对中国的植物(含真菌) 写过不少文章,1775年他发表的五棱散尾菌(Lysurus mokusin),是用现代科学方法研究发表的第一个中国真菌。继而,俄国的波塔宁(G. N. Potanin, 1876)、意大利的吉拉迪(P. Giraldii, 1890)、奥地利的汉德尔-马泽蒂(H. Handel-Hazzetti, 1913)、美国的梅里尔(E. D. Merrill, 1916)、瑞典的史密斯(H. Smith, 1921)等共27人次来我国采集标本。研究发表中国真菌论著114篇册,作者多达60余人次,报道中国真菌2040种,其中含10新属、361新种。东邻日本自1894年以来,特别是1937年以后,大批人员涌到中国,调查真菌资源及植物病害,采集标本,鉴定发表。据初步统计,发表论著172篇册,作者67人次以上,共报道中国真菌约6000种(有重复),其中含17新属、1130新种。其代表人物在华北有三宅市郎(1908),东北有三浦道哉(1918),台湾有泽田兼吉(1912);此外,还有斋藤贤道、伊藤诚哉、平冢直秀、山本和太郎、逸见武雄等数十人。 国人用现代科学方法研究中国真菌始于 20 世纪初,最初工作多侧重于植物病害和工业发酵,纯真菌学研究较少。在一二十年代便有不少研究报告和学术论文发表在中外各种刊物上,如胡先骕 1915 年的"菌类鉴别法",章祖纯 1916 年的"北京附近发生最盛之植物病害调查表"以及钱穟孙 (1918)、邹钟琳 (1919)、戴芳澜 (1920)、李寅恭 (1921)、朱凤美 (1924)、孙豫寿 (1925)、俞大绂 (1926)、魏岳寿 (1928)等的论文。三四十年代有陈鸿康、邓叔群、魏景超、凌立、周宗璜、欧世璜、方心芳、王云章、裘维蕃等发表的论文,为数甚多。他们中有的人终生或大半生都从事中国真菌学的科教工作,如戴芳澜 (1893~1973)著"江苏真菌名录" (1927)、"中国真菌杂记" (1932~1946)、《中国已知真菌名录》(1936, 1937)、《中国真菌总汇》(1979)和《真菌的形态和分类》(1987)等,他发表的"三角枫上白粉菌一新种"(1930),是国人用现代科学方法研究、发表的第一个中国真菌新种。邓叔群 (1902~1970)著"南京真菌记载"(1932~1933)、"中国真菌续志"(1936~1938)、《中国高等真菌志》(1939)和《中国的真菌》(1963, 1996)等,堪称《中国真菌志》的先导。上述学者以及其他许多真菌学工作者,为《中国真菌志》研编的起步奠定了基础。 在20世纪后半叶,特别是改革开放以来的20多年,中国真菌学有了迅猛的发展,如各类真菌学课程的开设,各级学位研究生的招收和培养,专业机构和学会的建立,专业刊物的创办和出版,地区真菌志的问世等,使真菌学人才辈出,为《中国真菌志》的研编输送了新鲜血液。1973年中国科学院广州"三志"会议决定,《中国真菌志》的研编正式启动,1987年由郑儒永、余永年等编辑出版了《中国真菌志》第1卷《白粉菌目》,至2000年已出版14卷。自第2卷开始实行主编负责制,2.《银耳目和花耳目》(刘波主编,1992);3.《多孔菌科》(赵继鼎,1998);4.《小煤炱目 I》(胡炎兴,1996);5.《曲霉属及其相关有性型》(齐祖同,1997);6.《霜霉目》(余永年,1998);7.《层腹菌目》(刘波,1998);8.《核盘菌科和地舌菌科》(庄文颖,1998);9.《假尾孢属》(刘锡琎、郭英兰,1998);10.《锈菌目 I》(王云章、庄剑云,1998);11.《小煤炱目 II》(胡炎兴,1999);12.《黑粉菌科》(郭林,2000);13.《虫霉目》(李增智,2000);14.《灵芝科》(赵继鼎、张小青,2000)。盛世出巨著,在国家"科教兴国"英明政策的指引下,《中国真菌志》的研编和出版,定将为中华灿烂文化做出新贡献。 余永年 庄文颖 庄文颖 中国科学院微生物研究所 中国·北京·中关村 公元 2002 年 09 月 15 日 ### Foreword of Flora Fungorum Sinicorum Flora Fungorum Sinicorum summarizes the achievements of Chinese mycologists based on principles and methods of systematic biology in intensive studies on the organisms studied by mycologists, which include non-lichenized fungi of the Kingdom Fungi, some organisms of the Chromista, such as comycetes etc., and some of the Protozoa, such as slime molds. In this series of volumes, results from extensive collections, field investigations, and taxonomic treatments reveal the fungal diversity of China. Our Chinese ancestors were very experienced in the application of fungi in their daily life and production. Fungi have long been used in China as food, such as edible mushrooms, including jelly fungi, and the hypertrophic stems of water bamboo infected with Ustilago esculenta; as medicines, like Cordyceps sinensis (caterpillar fungus), Poria cocos (China root), and Ganoderma spp. (lingzhi); and in the fermentation industry, for example, manufacturing liquors, vinegar, soy-sauce, Monascus, fermented soya beans, fermented bean curd, and thick broad-bean sauce. Fungal fermentation is also applied in the tannery, papermaking, and textile industries. The anti-cancer compounds produced by fungi and functions of saprophytic fungi in accelerating the carbon-cycle in nature are of economic value and ecological benefits to human beings. On the other hand, fungal pathogens of plants, animals and human cause a huge amount of damage each year. In order to utilize the beneficial fungi and to control the harmful ones, to turn the harmfulness into advantage, and to convert wastes into valuables, it is necessary to understand the morphology, diversity, physiology, biochemistry, relationship, geographical distribution, ecological environment, and economic value of different groups of fungi. Flora Fungorum Sinicorum plays an important role from precursor to fountainhead for the applied sciences. China is a country with an ancient civilization of long standing. In the 4500 years from remote antiquity to the Ming Dynasty, her science and technology as well as knowledge of fungi stood in the leading position of the world. Wine is a metabolite of fungi. The Wine Culture history in China goes back 6000 to 7000 years ago, which has a distant source and a long stream of extensive knowledge and profound scholarship. In the Jin Dynasty (ca. 300 A. D.), JIANG Tong, the famous writer, gave a vivid account of the Chinese fermentation history and methods of wine processing in one of his poems entitled *Drinking Games* (Jiu Gao), 1500 years earlier than the theory of microbial fermentation in natural conditions raised by the Italian scholar, Radi (1860). During the period of the Yangshao Culture (5000—3000 B. C.), our Chinese ancestors knew how to eat mushrooms. There were a great number of records of edible mushrooms in Chinese ancient books. For example, back to the Song Dynasty, CHEN Ren-Yu (1245) published the *Mushroom Menu* (Jun Pu) in which he listed 11 species of edible fungi including *Amanita* sp. and *Tricholoma matsutake* from Taizhou, Zhejiang Province, and described in detail their morphology, habitats, taxonomy, taste, and way of cooking. This was the first local flora of the Chinese edible mushrooms. Fungi used as medicines originated in ancient China. The earliest Chinese pharmacopocia, *Shen-Nong Materia Medica* (Shen Nong Ben Cao Jing), was published in 102—200 A. D. Among the 365 medicines recorded, more than 10 fungi, such as *Poria cocos* and *Polyporus mylittae*, were included. Their fruitbody shape, color, taste, and medical functions were provided. The great pharmacist of Ming Dynasty, LI Shi-Zhen (1578) published his eminent work *Compendium Materia Medica* (Ben Cao Gang Mu) in which more than thirty fungal species were accepted as medicines, including *Aecidium mori*, *Cordyceps sinensis*, *Morchella* spp., *Termitomyces* sp., etc. Before the invention of microscope, he managed to bring fungi of different classes together, which demonstrated his intelligence and profound knowledge of biology. After the 15th century, development of science and technology in China slowed down. From middle of the 18th century to the 1940's, foreign missionaries, tourists, scientists, diplomats, officers, and other professional workers visited China. They collected specimens of plants and fungi, carried out taxonomic studies, and published papers, exsiccatae, and monographs based on Chinese materials. The French missionary, P. M. Cibot, came to China in 1759 and stayed for 25 years to investigate plants including fungi in different regions of China. Many papers were written by him. Lysurus mokusin, identified with modern techniques and published in 1775, was probably the first Chinese fungal record by these visitors. Subsequently, around 27 man-times of foreigners attended field excursions in China, such as G. N. Potanin from Russia in 1876, P. Giraldii from Italy in 1890, H. Handel-Hazzetti from Austria in 1913, E. D. Merrill from the United States in 1916, and H. Smith from Sweden in 1921. Based on examinations of the Chinese collections obtained, 2040 species including 10 new genera and 361 new species were reported or described in 114 papers and books. Since 1894, especially after 1937, many Japanese entered China. They investigated the fungal resources and plant diseases, collected specimens, and published their identification results. According to incomplete information, some 6000 fungal names (with synonyms) including 17 new genera and 1130 new species appeared in 172 publications. The main workers were I. Miyake in the Northern China, M. Miura in the Northeast, K. Sawada in Taiwan, as well as K. Saito, S. Ito, N. Hiratsuka, W. Yamamoto, T. Hemmi, etc. Research by Chinese mycologists started at the turn of the 20th century when plant diseases and fungal fermentation were emphasized with very little systematic work. Scientific papers or experimental reports were published in domestic and international journals during the 1910's to 1920's. The best-known are "Identification of the fungi" by H. H. Hu in 1915, "Plant disease report from Peking and the adjacent regions" by C. S. Chang in 1916, and papers by S. S. Chian (1918), C. L. Chou (1919), F. L. Tai (1920), Y. G. Li (1921), V. M. Chu (1924), Y. S. Sun (1925), T. F. Yu (1926), and N. S. Wei (1928). Mycologists who were active at the 1930's to 1940's are H. K. Chen, S. C. Teng, C. T. Wei, L. Ling, C. H. Chow, S. H. Ou, S. F. Fang, Y. C. Wang, W. F. Chiu, and others. Some of them dedicated their lifetime to research and teaching in mycology. Prof. F. L. Tai (1893—1973) is one of them, whose representative works were "List of fungi from Jiangsu" (1927), "Notes on Chinese fungi" (1932—1946), A List of Fungi Hitherto Known from China (1936, 1937), Sylloge Fungorum Sinicorum (1979), Morphology and Taxonomy of the Fungi (1987), etc. His paper entitled "A new species of Uncinula on Acer trifidum Hook. & Arn." was the first new species described by a Chinese mycologist. Prof. S. C. Teng (1902—1970) is also an eminent teacher. He published "Notes on fungi from Nanking" in 1932—1933, "Notes on Chinese fungi" in 1936—1938, A Contribution to Our Knowledge of the Higher Fungi of China in 1939, and Fungi of China in 1963 and 1996. Work done by the above-mentioned scholars lays a foundation for our current project on Flora Fungorum Sinicorum. In 1973, an important meeting organized by the Chinese Academy of Sciences was held in Guangzhou (Canton) and a decision was made, uniting the related scientists from all over China to initiate the long term project "Fauna, Flora, and Cryptogamic Flora of China". Work on Flora Fungorum Sinicorum thus started. Significant progress has been made in development of Chinese mycology since 1978. Many mycological institutions were founded in different areas of the country. The Mycological Society of China was established, the journals Acta Mycological Sinica and Mycosystema were published as well as local floras of the economically important fungi. A young generation in field of mycology grew up through post-graduate training programs in the graduate schools. The first volume of Chinese Mycoflora on the Erysiphales (edited by R. Y. Zheng & Y. N. Yu, 1987) appeared. Up to now, 14 volumes have been published: Tremellales and Dacrymycetales edited by B. Liu (1992), Polyporaceae by J. D. Zhao (1998), Meliolales Part I (Y. X. Hu, 1996), Aspergillus and its related teleomorphs (Z. T. Qi, 1997), Peronosporales (Y. N. Yu, 1998), Sclerotiniaceae and Geoglossaceae (W. Y. Zhuang, 1998), Pseudocercospora (X. J. Liu & Y. L. Guo, 1998), Uredinales Part I (Y. C. Wang & J. Y. Zhuang, 1998), Meliolales Part II (Y. X. Hu, 1999), Ustilaginaceae (L. Guo, 2000), Entomophthorales (Z. Z. Li, 2000), and Ganodermataceae (J. D. Zhao & X. Q. Zhang, 2000). We eagerly await the coming volumes and expect the completion of Flora Fungorum Sinicorum which will reflect the flourishing of Chinese culture. > Y. N. Yu and W. Y. Zhuang Institute of Microbiology, CAS, Beijing September 15, 2002 ## 致 谢 中国科学院微生物研究所真菌地衣系统学重点实验室刘锡琎、余永年、应建浙、郑儒永、陈庆涛、徐连旺、宗毓臣、卯晓岚、李滨、郭林等以及过去曾在本研究所的前真菌研究室工作的韩树金、马启明、廖银章、于积厚、邢延苏、刘恒英、刘荣、杨玉川、宋明华、王庆之、邢俊昌等历年在野外考察时曾为我们采集一些锈菌标本;中国科学院沈阳应用生态学研究所戴玉成,山西大学刘波,内蒙古农业大学林学院尚衍重、侯振世,东北林业大学薛煜,吉林农业大学刘振钦,北京市农林科学院刘伟成,山东农业大学张天宇,中国林业科学院海南热带林业站段定仁,广西大学农学院赖传雅,贵州大学农学院向红琼,西南林学院周形桑,中国科学院昆明植物研究所臧穆,西北农林科技大学李建义、曹支敏,新疆农业大学赵震宇,新疆林业科学研究所刘振坤,中国科学院植物研究所标本馆和复旦大学生物系等单位和个人先后向我们赠送了锈菌标本多份。谨此向所有采集者表示衷心感谢。 中国科学院植物研究所 韩树金 在微生物研究所工作期间参加了部分研究工作并为我们鉴定了许多寄主植物标本;中国科学院植物研究所周根生和曹子余在 韩树金 调离后至今一直为我们鉴定大量的寄主植物标本。我们在此对他们表示深切谢意。 国外一些标本馆在本志编研过程中为我们借用、赠送和交换了许多标本,包括不少模式或权威专家鉴定的标本。它们是美国农业部国家菌物标本馆(BPI)、美国波杜大学阿瑟标本馆(PUR)、美国哈佛大学隐花植物标本馆(FH)、美国密执安大学植物标本馆(MICH)、加拿大农业部国家菌物标本馆(DAOM)、芬兰赫尔辛基大学植物标本馆(H)、芬兰奥卢大学植物标本馆(OULU)、德国国家植物标本馆(M)、瑞典乌普萨拉大学植物标本馆(UPS)、瑞典自然历史博物馆植物标本馆(S)、英国国际菌物研究所标本馆(IMI)、英国丘园植物标本馆(K)、罗马尼亚布加勒斯特生物研究所菌物标本馆(BUCM)、俄罗斯科学院科马罗夫植物研究所标本馆(LE)、俄罗斯科学院符拉迪沃斯托克生物土壤研究所植物标本馆(VLA)、日本东京平家标本馆(HH)、日本筑波大学农林学系菌物标本馆(TSH)、日本茨城大学菌物标本馆(IBA)、新西兰科学和工业研究部植病分部菌物标本馆(PDD)等。这些标本使我们得以对有关种进行比较研究,解决了不少问题。对于上述标本馆的热情支持和帮助,我们表示由衷的感谢。 此外,我们还要感谢日本平塚直秀博士、平塚利子博士、勝屋敬三博士、佐藤昭二博士、柿岛真博士、小野義隆博士、金子繁博士、原田幸雄博士、佐藤豊三博士,美国G.B.Cimmins博士、J.F.Hennen博士、R.S.Peterson博士,加拿大D.B.O.Savile博士、平塚保之博士,俄罗斯Z.M.Azbukina博士、I.V.Karatygin博士,法国G.Durrieu博士,挪威H.B.Gjærum博士,瑞典L.Holm博士,捷克Z.Urban博士、J.Markova博士,德国U.Braun博士,奥地利P.Zwetko博士,新西兰H.C.Mckenzie博士等为我们赠送、复制大量的文献资料。 最后,我们感谢中国科学院微生物研究所菌物标本馆孙述霄和吕红梅在借用和人藏 标本以及计算机检索和统计等方面所给予的帮助。 ### 说明 - 1. 本书是作者对我国锈菌进行区系调查和分类研究的总结,分卷出版,总共记载我国已知锈菌 60 余属(包括式样属 form genera) 1000 余种。由于各科、属研究编写进度不一,各卷不按系统顺序连续编写,各卷号也不相连。 - 2. 本卷记载柄锈菌科单胞锈菌属的种计 108 个。每个种和变种均有名称、文献、 形态特征描述、寄主、产地、世界范围的分布及有关问题的讨论等;为便于识别比较, 凡某寄主科含 3 种以上锈菌则列出该寄主科锈菌种的检索表。 - 3. 为了便于查阅, 寄生于不同寄主科的种按植物系统分开排列, 各寄主科的锈菌种按学名字母顺序排列。本书所采用的植物系统和《中国植物志》(科学出版社)或《中国高等植物科属检索表》(科学出版社) 所采用的恩格勒(A. Engler) 系统一致。 - 4. 所载锈菌学名,对科名不举命名人、发表年代及所载文献。属名及种和种下单位学名均列举命名人、发表年代及所载文献。种、种以下单位及其异名除列出名称的原始出处外,仅列出涉及我国的有关文献。种和种下单位的异名只列举涉及我国的文献中出现过的。属于错误鉴定的名称作为异名列出,在名称后加"auct."接着列出文献出处。 - 5. 锈菌的汉语名称根据 1986 年第二届全国真菌、地衣学大会通过的《真菌、地衣汉语学名命名法规》(真菌学报 6: 61~64, 1987)修订。其中大多数继续沿用《真菌名词及名称》(1976, 科学出版社)审定过的名称。对少数取用不当的老名称在本志中予以重订。本志尚补充一些新拟汉名。 - 6. 寄主学名和汉名主要根据科学出版社出版的《中国植物志》各卷、《中国高等植物图鉴》(第一至第五册,补编第一、二册)(1972~1983)、《中国高等植物科属检索表》(1983)、《拉汉种子植物名称》(1974)和《拉汉英种子植物名称》(1989)、航空工业出版社出版的《新编拉汉英植物名称》(1996)以及青岛出版社出版的《中国高等植物》已出版的各卷(2000~2004)。 - 7. 文献引证中的人名一律采用英语或拉丁化后的拼音。讨论中出现的人名如系中国作者一律使用汉字,其他国家的作者一律采用英语或拉丁化后的拼音。 - 8. 种和种下分类单位的形态特征描述及数据,均系根据对我国标本的直接研究和测量所得。对春孢子阶段简略描述性孢子器和春孢子器外观及春孢子形态,若在我国未发现春孢子阶段则在讨论中说明。少数种在我国仅见夏孢子阶段,若鉴定无疑亦予收编,在描述中依据我国标本仅描述其夏孢子堆及夏孢子,在讨论中根据有关文献简略介绍其冬孢子特征供参考。 - 9. 本书的孢子形态线条图系根据我国标本绘制。凡模式采自我国的种,其孢子线条图尽量根据模式标本描绘。个别种的模式标本未见或模式已遗失、损坏或未能检出孢子,线条图则根据非模式标本绘制或仿照原图或照片重绘。凡冬孢子在我国未发现的种概不附图。 - 10. 所引证的标本除一些来自国外的特别用标本馆代号注明其保藏地点外,其余未注明保藏地点的均保藏于中国科学院微生物研究所菌物标本馆(HMAS)。括号内的号码系为 HMAS 的标本编号。国外的标本馆代号依照国际植物分类学协会(IAPT)和纽约植物园编辑出版的《Index Herbariorum》(第八版,1990)。 - 11. 个别首次发现于我国但模式标本未能研究而我们认为可以承认的种亦予收编,按原记载列出文献、形态特征描述、寄主和产地,并在讨论中加以说明,但无附图。 - 12. 我们未能看到标本但有文献记载而我们认为在我国有可能分布的种归人"未研究的种"中,按原记载列出文献、形态特征描述、寄主和产地,但无附图。 - 13. 有文献记载的基于无性型材料(绝大多数是基于春孢子阶段)而使用有性型名称的可疑鉴定、基于可疑寄主的鉴定以及我们未能直接研究标本的可疑鉴定都作为可疑记录处理。各个可疑记录有简短说明。 - 14. 有文献记载而无标本依据的寄主和分布在讨论中予以说明。 - 15. 国内分布以所引标本为依据。不同直辖市、省、自治区之间以分号区分,按中国地图出版社出版的《中国地图册》中出现的顺序排列;同一省、自治区内的不同县、市、山或地区之间以逗号区分,按拼音字母顺序排列。 - 16. 世界范围的分布是根据文献资料整理。参照各国锈菌志和中国植物志,分布区不全用国名表示,凡属广布或较广布的种以"世界广布"、"北温带广布"、"热带广布"或"洲"等大地理区表示。洲、群岛、山脉、国并列时用分号区分,同类地域如洲与洲或国与国等用逗号区分。每个种的分布以模式产地和主要分布区(洲、国家或地区)排列在前,其他洲、国家或地区排列在后,尽可能暗示种的分布区类型。 - 17. 书末所附的参考文献仅列出讨论中出现的文献,按作者姓名字母(我国作者按拼音字母,其他非英语国家作者按拉丁化后的字母)顺序排列。作者姓名、题目、期刊名均按发表时所用的语种列出。为便于查阅,中文、日文和俄文文献在括号内附汉语拼音或拉丁化的作者姓名、英文题目和期刊名。 - 18. 书末附有寄主汉名、锈菌汉名、寄主学名和锈菌学名四个索引。 # 目 录 | 序 | | |-----------------------------------------------------------------------------------------|----| | 中国孢子植物志总序 | | | 《中国真菌志》序 | | | 致谢 | | | 说明 | | | 单胞锈菌属 Uromyces Unger ······ | 1 | | 三白草科(Saururaceae)植物上的种 ······ | 2 | | 三白草单胞锈菌 U. saururi Hennings ······ | | | 蓼科(Polygonaceae)植物上的种 ······ | 2 | | 萹蓄单胞锈菌 U. polygoni-avicularis (Pers∞n) P. Karsten ······ | | | 酸模单胞锈菌 U. rumicis (Schumacher) G. Winter ····· | | | 藜科(Chenopodiaceae)植物上的种 ····· | | | 假木贼单胞锈菌 U. anabasis Kazenas ······ | _ | | 角果藜单胞锈菌 U. ceratocarpi H. Sydow & P. Sydow | | | 藜单胞锈菌 <i>U. chenopodii</i> (Duby) J. Schröter | | | 驼绒藜单胞锈菌 U. eurotiae Tranzschel | - | | 盐角草单胞锈菌 U. salicorniae de Bary ······ | | | 猪毛菜单胞锈菌 U. salsolae Reichardt ······ | | | 赛多单胞锈菌 U. sydowii Z. K. Liu & L. Guo ······ | | | 苋科(Amaranthaceae)植物上未研究的种 ····· | | | 浆果苋单胞锈菌 U. deeringiae H. Sydow & P. Sydow | | | 石竹科(Caryophyllaceae)植物上的种 ····· | | | 狗筋蔓单胞锈菌 U. cucubali Hiratsuka f. & Hashioka ······ | _ | | 石竹单胞锈菌 U. dianthi (Persoon) Niessl ······ | | | 不等单胞锈菌 U. inaequialtus Lasch ······ | | | 星毛繁缕单胞锈菌 U. stellariae-saxatilis L. Guo & Y. C. Wang | | | 石竹科植物上的可疑记录 | | | 厚顶单胞锈菌 U. crassivertex Dietel ······ | | | 毛茛科(Ranunculaceae)植物上的种 ······ | | | 铁筷子单胞锈菌 U. hellebori-thibetani J. Y. Zhuang & S. X. Wei ·········· | | | 狼毒乌头单胞锈菌 <i>U. lycoctoni</i> (Kalchbrenner) Trotter ··································· | | | 豆科(Leguminosae)植物上的种····· | | | 异形单胞锈菌 U. aberrans Dietel | | | 黑龙江单胞锈菌 U. amurensis Komarov ······ | 26 | | | |