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Foreward

Prof. Chen Guowang was born on 1935.06.04 in Wanquan County, Hebei province, P.R. China.
He graduated from Department of Mathematics and Mechanics of Peking University in 1957.
Since then he has taught in Department of Mathematics of Zhengzhou University. During this
course he was chosen and sent to study abroad by state in Feb. 1960 and first to learn Russian in
Beijing Foreign Languages Institute. In October of the same year he studied for an associate
doctorate at Institute of Mathematics of Charles University, Czechoslovakia, and in October 1964
he obtained the degree there and returned home. Since 1978, he has been in charge of a discussion
class for nonlinear partial differential equations in Department of Mathematics of Zhengzhou
University and trained a series of Doctors, Masters and young teachers engaged in the study of
partial differential equations. He also participated the start of “Journal of Partial Differential
Equations™ (English edition) and holds one of the deputy editors-in-chief of the journal taking
care of routine matters. This journal has played important part with respect to the development of
partial differential equations in our country and to the academic exchange with foreign countries.

Prof. Chen was chosen as a good teacher of Henan province in 1989 and has enjoyed special
subsidy given by the state since 1992; in 1993 he was named as a good specialist of Henan
province and in 1997 was chosen as a publisher of good scientific and technological journal of
Henan province.

He has diligently worked for 48 years at the teaching and scientific research post, passes
knowledge, teaches and explains difficulties and cultivated many men of ability from graduates to
doctorial postgraduates.

In this collection, 26 papers written by him and co-written by him with other scholars in
different times are included, which really reflects the tracks of his scientific researching works.

On the occasion of the publication of this collection and the time when it happens to be his 70"

birthday, we, his students, heartedly extend our cordial greetings to him.
Miao Changxing  Xing Jiasheng  Jiang Chengshun
Yang Zhijian Zhao Zhancai  Wang Shubin

Zhang Hongwei Wang Yanping

May 1. 2005
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GENERALIZATION OF STEFFENSEN'S METHOD FOR

OPERATOR EQUATIONS IN BANACH SPACE *

Chen Kuo-wang, Praha

1 Introduction

In this paper the Steffensen’s method of solution of non-linear equations ([1], Ap-
pendix 5) is generalized for solution of non-linear equations in Banach space. Here I use the
Schmidt's concept of the divided difference, introduced in [2(I)]; partly, I have made use of
this work of his in methodological respect (in particular, paragraph 4), too.

Steffensen’s method is an iterative method based on alternate performance of one step
of the succesive approximation and one step of the method regula falsi. If we denote the
initial approximation by zo, then the iterative formula for the calculation of the roots of the

equation z = f(z) is either

Tny1 = f(Tn) + 0f[f(Tn), Tn)(Tn+1 — Zn)

or
Tays = f{f(@n)] + 0 [f(@n), Znl[Znt1 — f(zn)],

where FlF )] = F(za)
zn)] = f(zn
éf[f(xﬂ)axﬂ] = f(zn) _ zn M

Both formulae are equivalent in the sense that they give the same sequence {z,} when

beginning with the same zo . In the generalization presented here, it is possible to solve
the equation £ = Fz by the analogical iterations (2.4) and (2.5) which are again equivalent
in the same sense. Therefore, the sufficient conditions for the convergence of any of both
sequences defined by the formulae (2.4) and (2.5) are sufficient even for the convergence of
the other sequence. The formula (2.5) is simpler for the practical calculation. In spite of
that, I shall deal further with formula (2.4), because in this way I have been successfull in

obtaining less restrictive sufficient conditions for the convergence.

*Commentationes Mathematicae Universitatis Carolinae, Vol. 5, No.2,1964, 47-77.



In the work {2(I)], J.W.Schmidt studies the solution of the equation z = Fz by means
of method applying the iterative process

Tnt1 = Fn + 6F(Tp, Tn1)(Tns1 — Zn),

[

calling it the Steffenson’s method ([2(I)], method (2.9) on p.2; conditions of convergence
stated in Theorem 4.1. on p.7). However, this process is quite different from the iterative
process (2.5), being, essentially, a modification of the secant method ({1] , Chapter 3, para-
graph 9). Its convergence is of an other character than convergence of the process (2.5), as
it is easy to see when compared the Schmidt’s estimates of errors ([2(I)], (4.1)) with these
contained in this paper. See also numerical example in paragraph 3.

The general results of this paper are presented in paragraph 2. Applications of the
general theorems on systems of non-linear equations and on non-linear integral equations

are stated in paragraphs 3 and 4.

2 Theorems of convergence and uniqueness

We shall use the following denotation: R is a Banach space, F' a non -linear operator
mapping R into R. The symbol 6F(u,v) will denote the divided difference of the operator
F. This concept, introduced by Schmidt [2] under the title Steigung, is defined as follows.
We shall say that the operator F has a divided difference 6F(u,v) in the space R, when
there exist two non-negative numbers a, b such that for every two elements u, v from R there

exists a linear bounded operator §F(u,v) on R, satisfying the inequality

(2.1) Fu — Fv = 6F(u,v)(u —v),
(2.2) 16F (u,v) — 8F (v, w)|| £ allu — wl + bllu ~ vl + bllv — wl|.

Let an equation
(2.3) z=Fz
be given; to solve equation (2.3) we use the iterative processes

(2.4) Tnpr = F22y + 0F(F2,,25)(Zn41 — Fzn) (n=0,1,2,--),
(25) Tyl = F.Tn + 6F(an,$n)($n+1 - In) (n = O’ 1’ 2’ .. )
Lemma  Iterative processes (2.4) and (2.5) are equivalent in the following sense:

Let zo be an arbitrary element from R . If the elements of either of the two sequences

T, T1, - - »Tn defined by the process (2.4); Ty, 3, ", Ty, (z} = z¢) defined by the process



(2.5) are defined, then the ones of the other sequence are defined as well and the equalities
z; =1z}, 1=1,2,--+,n hold.
Proof The proof of this lemma may be achieved by means of full induction, as is

easily seen from that, when subtracting the identity
¢ = F*z, — Fx, — 6F(Fz,,z,)(Fzn, — z,)

from (2.4), we get (2.5).
Theorem 1 Let F be an operator which has the divided difference. Let the following
conditions be fulfilled:

1) There exists a number A > 0 such that inequality
(2.6) lFu = Fol| < Affu — vl

holds for two arbitrary elements u,v from R.
2) The inequality

(2.7) 8F (Fzo,zo)ll = do < 1

holds for the fixed element zo € R.
3) The element z; is defined by (2.4) and there exists a real number ¢ (0 < t < 1) such
that
_ [(a +b) + 2bt]t

(28) h=h(t) = 2222 — ol < 1,
(2.9) do + [(a +b)(1+ X) + 4b)[1 + a(h))llz1 — ol <t < 1,
where

b k
a(h) = A*
k=1
Then the equation (2.3) has a solution z* in the sphere
(2.10) D = {z € R,||lz — z1|| < A1 + o (h?)]|lz1 — zoll}.

The sequences {z,} defined by equalities (2.4) or (2.5) converge in the norm of R to

the solution z* of (2.3) and the error ||z* — zn|| of the approximation z,, satisfies

(2.11) liz* - zo|| < BT L+ o (B )llen — Tacallin = 1,2, -+,
(2.12) lz* = zall < A¥ 14 o(hY)]llz1 — zoll, R =1,2,---.

Proof Let us put

”In+1 - zn" = Hn,

6F(Fzn, zo)ll = dn, n=0,1,2,---.



First of all, we shall show that the following inequalities

(213) [Zn+1 = Fzall < dnpn,

(2.14) HFzZn41 — Fznall < Apn,

(2.15) lzn — Fznll < dapin + pin,
(2.16) IFZnt1 = Tns1]l < Atin + dnpn

are fulfilled.
We have

|Zns1 ~ Fznll = ”szn = Fz, 4+ §F(FZn,20)(Tnsr — Fza)ll
= |6F(FZp, Tn)(FTn = Tp) + 0F(FZn,Za)(Tns1 — Fzn)ll
= |0F(Fzn,Zn)(Zns1 — Zn)l| < dnin.

The correctness of inequalities (2.14),(2.15) and (2.16) can be easily verified.

We Prove the following inequalities:

(2.17) pns1 < dnyipingr + (@ + b) + 2bdn]dnp,
(2.18) dnv1 < dn +{(a+ )1+ A) +4bdp)ptn, n=0,1,2,---.
a) In the expression pni1 = [[€nt+2 — Zn41ll, We replace zn42 and zn41 according

to the formule (2.4); adding —Fzn+1 + FZn41 and using formula (2.1) for the differences

F?z,,1 — Fznt, Fzny — F2z,, we get
pint1 = J6F(FZns1, Tn41)(@ns2 = Tnt1) + [0F (Tni1, Fzn) — 6F(Fzn, 20))(Znt+1 — F2a)ll.

Using the inequalities (2.2),(2.13) and (2.15) we obtain (2.17).
b) By means of the triangle inequality, we get

dny1 <dn + lldF(an+l,zn+1) - 5F(-"’n+lyF~Tn)”
+ I6F(Znt1, Fzpo) — 6F(Fzn, 0l

By (2.2)

dny1 <dn + al|Fzasy — FTall + 0| Fznsy = Tasl

+ 2bl|Znt1 = Fzall + bllFZa — Zn|| + apin.

The formula (2.18) follows at once from (2.13),(2.14),(2.15) and (2.16).

Now, by means of full induction we shall prove the following relations:



a) dn <dp+[(a+b)(1+A)+4b)[1+0a1(h)] mo<t<1,
b) pn < h¥ "lpg,
c) z, € D,

where

an(h) - thh—l’
k=1

oo(h) =0 for n>1.
1) Let us put n = 1, then we get for n = 0 from (2.18) and (2.7), (2.9) the inequality
dy <do+[(a+b)(1+X)+4bJuo <t<1

Hence, the inequality a) holds for n = 1.

Similarly, from (2.17) we have

p1 < dypy + [(a+ b) + 2bdg)dopl.

From (2.8) and in view of that the inequality 0 < d; <t < 1 holds, we get

[(a+b)+ 2bt]t;ﬁ

1-1¢ o = huo

Hi
2) Let the inequalities a),b) be fulfilled for n. According to (2.18), it follows that

dnt1 <do + [(a +b)(1 + A) + 4b][1 + g1 (h)]po
+ [(@a+b)(1 + X) + 4bd,]h?¥ ~tpq.

Because d,, < 1 and o,—1(h) + h¥"~! = 0,(h) < o(h), we obtain relations a) for the
index n + 1, considering supposition (2.9).

Because d,+; <t < 1, it follows from (2.17) that

a + b) + 2bt]t a + b) + 2bt]t ntl_
fhnt1 [( 1)—t ]3‘<[( 1)_t ]“ghz“ 2

From (2.8) it follows that

h2"+1—1

bni1 < Ho-

Further, from b) we have

Hener — il Spr +p2 + -+ pin
< A1+ an-1(h®)]po < A1+ a(h®)]po. n=1,2,---.

Therefore,z, € D.



From the inequality
dn = |6F (Fzn,z0)ll <t <1

it follows that the operators I — §F(Fzp,z,), n = 0,1, - have the inverse operators.

Therefore, the sequence {z,} is defined by (2.4). Consequently, the inequality

||Im+n - xn” < Pn+m-1 + Bntm-2 + -+ lng1 + ln
<(1 + h2n+1_2n + L + h2n+m—2_2n + h2n+m—1__2n)h2n_l#o
m—1 .
=h* [1 + (") ] po = K" L+ ooy (B2 ]o-
k=1
holds for arbitrary m >n > ng > 1.
From here it follows that {z,} is a fundamental sequence. R being a complete space,
the sequence {z,} possesses the limit element z*. Of course, z* € D.

We shall prove the inequality (2.11). Let us denote
h  [(a-+b)+2bt)t

Ho 1-¢

Because d,, < t < 1 for arbitrary n, we have

(2.19) pnt1 < qul.
From here it is easy to show that

(2.20) ik <@ 2, n=01,--, k=12,
Then it follows

1Tn+m—t — Znll € Pngm + -+ pbin

m m m-%__ moe-1
<@ 4T TR+ 4 qpn + )
=[1+am(q;u'n)]/-‘n1 n=011127"" m=12,---
In view of the relations
gun < gh?" "'po = A7,

n -

nel_ 1
pn < qud_y < quoh® pni=h" paor
and the above inequality, it follows that
n—1 n
lZnsmir = Zall S BT (1 4+ om(h?)lun-.

Hence for m — oo we obtain the estimate (2.11).



The proof of the estimate (2.12) from (2.11) using the inequality b) pp.; < p2i-1 1o

is obvious.

We shall prove that z* satisfies the equation (2.3). First of all we have
lz* — Fz*|| < {lz” = zall + |fen — Fz*|.

In the expression ||z, — Fz*||, we replace z, acording to the formula (2.4); we add

~Fz,_1 + Fz,_, and we use formula (2.1) for the difference F?z,-; — Fz,_;. We get
|zn — Fz*|} < dn-1llZn — Tn-1ll + [|F2n—1 — Fz7||.
Because £,-1 € D,z* € D and d,,_1 <t < 1, we obtain by (2.6)
llz* = Fz*|| < llz* = zall + then ~ Taall + Miza-a — 27|}
Hence, for n — oo, we get |jz* — Fz*|| < 0. Therefore
zt = Fz".

This completes the proof.
Theorem 2. If the assumptions of Theorem 1 are fulfilled and if 0 < A < 1 holds,
then the equation (2.3) has a unique solution in the sphere D.

Further the inequalities

(2.21) le* -zl < EEDERM om0
- a+b +2btt n_

(2.22) " - zall < LOEDE R 2 g, m=1,2,-

hold.

Proof. Let us assume that the equation (2.3) has two different solutions z*, & in the

sphere D. Then we get
llz* — || = ||Fs" = Fal| < Alle* - 3 < lle" - .

This is a contradiction showing that z* = Z.
We shall now prove the estimate (2.21). Let n > 1. We replace z* in the expression
|lz* — 2| by Fz* and we replace z, according to (2.4); adding —Fz» + Fzn and using (2.1)

for the difference Fz, — F?z,_;, we get
(2.23) ||z* = znll = |F2* = Fzp + [0F(2n, Fzn-1) = 0F(FTn1,%a-1)}(%n = Fzn_1)|-

We shall use the triangle inequality for the norm of the difference in the square brackets.
We shall use the inequality (2.2) and for the difference Fz* — Fz, (2.6).



After a slight modification we obtain

llz* = zall < Miz” — zall + [(@ + b) + 2bt]t]|zn — zn—a].

Because 0 < A < 1, it follows that

[(a + b) + 2bt]t

* - <
e - zal < FEE

lzn - zn—lllz-
From the inequality ||zn — Zn-1|| < h?" ' =1j|zy — zol| and (2.21), we get the estimate
(2.22).

Theorem 3. Let F be an operator which has the divided difference. Let the following
conditions be fulfilled:

1) The inequality
(2.24) 6F (Fxo,zo)l| =do < 1

holds for the fixed element zo € R.

2) The element z; is defined by (2.4) and there exists a real number ¢ (0 < ¢ < 1) such
that

(2.25) h=h(t) = M_I’z)__jriﬂ’t_lf

(2.26) do + (a + b)(a + 7b)(1 + a(h®)]||z1 — zol|?
+2(a+ 3b)[1 + o(h)]||z1 — 20|l St < 1.

flz1 — zoll < 1,

Then the equation (2.3) has a solution z* in the sphere
D = {z € R,||lz — z:|l < h1 + o (h?)]llz1 — zoll}.

The sequences {z,} defined by formulae (2.4) or (2.5) are convergent in the norm of R

to the solution z* of (2.3) and the error ||z* — z,|| of the approximation z, satisfies

227)  llg* — zall <A 14+ 0(h?)]lIzn - Taoall,

(2.28)  |lz* — zall < AL+ o(A7)]llz1 — ol
{h?" (a + b)[1 + a(h?")]? + [(a + b) + 2bt]t}

(229) |lz" -z, < lzn — zn-1l%,

1-¢
h2* " =2(a + B)[1 + o(h?”

(2.30)  [lz" - zall < C JI _)[t nA i) VT
+h Moy ~zoll, n=1,2.--.

Proof. The main idea of the proof is the same as in Theorem 1. The formulae

(2.31) fn+1 < dngifing1 + ((a+b)+ 2bdnldnﬂ'3u
(2.32) dpy1 < dn +2(a+ 3D)pn + (a + b)(a+ TD)pd, n=0,1,2, -



play here the role of formulae (2.17) and (2.18).

The first formula is the same as formula (2.17), the second one will be proved in the

following way.

By means of the triangle ineqauality, and using the inequalities (2.2), (2.13) and

NFzns1 = Tapill SWFTavr — Fall + |Fzn — Tasall,

IFzn = zall < |Fzn ~ Tpsll + [|Znt1 — zall,

we get
dny1 <dn + |6F(FZnt1, Zns1) — OF (Znp1, FZo)|| + |6F (Tns1, FTn)
~ 0F(Fzn,z,)|l
<dn + (@ + b+ 4bdq) pn + (@ + O)||||FZn41 — Fzal|.
Now

FTns1 — Fzal| L |6F(Tnt1,2Zn) — 0F (Tn, Fzp) + 0F (2, Fzp)

= 0F(Fzn,z5) + §F(Fzn, zn)llpn
S6F (zns1,2n) ~ 6F(zn, Fan)|l + |0F (zn, FZn) — 6F(Fzn,zn)l| + dn]in
<[(a + 3b)dnpn + 4biin + dy]ptn-

From the above inequality we obtain (2.32).
We shall now prove that the relations

(2.33) a) dn <do+ (a+b)(a+ )1+ an_1(h?)ul
4+2(a+30)[1+on1(h)uo <t <1,
(2:34) b)  pn <A,
c) zp€D

hold for n = 1,2,---. For n = 1 it is evident.

Let us suppose that a),b) hold for n. According to (2.32) we have
dns1 < do + (a + b)(a + TH)[1 + op—1(h?)]ud + 2(a + 3b)[1 + o1 (h)]k0
+2(a + 35)h2" Lo + (a + b)(a + T)A?" T 242
<dp + (a + b)(a + 7b),
1+ an(h®)]pd +2(a + 3b)[1 + on(h)]pe < t < 1.

The proof of all the assertions of theorem except that Fz* = z* and except the proofs

of the inequalities (2.29) and (2.30) will be made in the same manner as in Theorem 1.



