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Chapter 1

Introduction’

1.1 Special Nature of Rock Mass in Geomechanics

The reason for the general difficulty in modeling rock masses ", by whatever numerical method, is
that rock is a natural geological material, and so the physical or engineering properties have to be
established, rather than to be defined through a manufacturing process. The rock mass is largely
discontinuous, anisotropic”, inhomogeneous” and non-elastic (DAINE) M Rock masses are under

stress and continuously loaded by dynamic movements of the upper crust of the Earth, such as tectonic
movements, earthquakes, land uplifting/subsidence, glaciation’s cycles and tides. A rock mass is also a
fractured porous medium” containing fluids in either liquid or gas phases, e.g. water, oil, natural gases
* and air, under complex in situ” conditions of stresses, temperature and fluid pressures. The complex

combination of constituents and its long history of formation make rock masses a difficult material for
mathematical representation via numerical modeling.

. In relation to the generally discontinuous nature of rock masses, the photograph of a blasted
rock surface in Fig. 1.1 highlights the fact that rock masses contain through-going pre-existing
fractures, as well as fractures introduced by the excavation process.

Most of the fractures visible in Fig. 1.1 are pre-existing natural fractures. Although these rock
fractures have occurred naturally through geological processes, their formation is governed by
mechanical principles, as illustrated by the three main sets of fractures that, in this case, are mutually
orthogonal and divide the rock mass into cuboids. The fractures are often clustered in certain
directions resulting from their geological modes and histories of formation. One of the main tasks of

. . e . . . . . . o,
numerical modelingin rock mechanics is to be able to characterize such mechanical discontinuities

in a computer model—either explicitly or implicitly—the so-called ‘material conceptualization”’ .

Additionally, the interaction between the rock mass and the engineering structure has to be
incorporated in the modeling procedure for design, so that consequences of the construction process
have also to be characterized.

1 This chapter was written based on this paper: Jing Lanru. A review of techniques, advances and outstanding issues
in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci. 2003, 40:283-353;: (D)
rock masse: % {4: Qanisotropic: % &) PE): Ginhomogeneous: I : @fractured porous medium:
HBLBRAT B ©natural gases: KR (: @insitu: M : DOnumerical modeling: #{EHR; @material
conceptualization: # ¥4t



2 ADVANCES IN COUPLED MODELING IN GEOMECH

Fig. 1.1  Surface of a blasted rock mass, illustrating that pre-existing fractures can divide the rock
mass into discrete blocks, and that the interaction between the rock mass and the engineering
processes also needs modeling for the engineer to have a predictive capability for design purposes.
Note the ‘half-barrels’ of the blasting boreholes”’*!,

To adequately represent the rock mass in computational models, capturing such fracturing and
the complete DAINE nature of the rock mass, plus the consequences of engineering, it is necessary
to be able to include the following features during model conceptualization:

(D The relevant physical processes and their mathematical by partial differential equations

(PEDs) ", especially when coupled thermal, hydraulic and mechanical processes need to be
considered simultaneously;

(2) The relevant mechanisms and constitutive laws with the associated variables and parameters;

®) The pre-existing state of rock stress~ (the rock mass being already under stress);

@ The pre-existing state of temperature and water pressure (the rock mass is porous, fractured;
and heated by a natural geothermal heat gradient’ or manmade heat sources);

®) The presence of natural fractures (the rock mass is discontinuous);

@partial differential equation (PDE): {5 5752 @rock stress: 247 % J); (3geothermal heat gradient: Hi



© Variations in properties at different locations (the rock mass is inhomogeneous);

(D Variations of properties in different directions (the rock mass is anisotropic);

(® Time/rate-dependent behavior (the rock mass is not-elastic and may undergo creep or plastic
deformation);

(9 Variations of properties at different scales (the rock mass is scale-dependent);

(D) The effects resulting from the engineering perturbations (the geometry is altered).

How these features can actually be incorporated into a computer model will depend on the
physical processes involved and the modeling technique used; hence, both the modeling and any
subsequent rock engineering design will contain subjective judgments.

Rock engineering' projects are becoming larger and more demanding in terms of the modeling

requirements, one of which, for example, may be to include coupled thermo-hydro-mechanical

(THM)”® behavior into the model. A truly fully coupled model (including extra processes, such as
chemistry) requires complete knowledge of the geometrical and physical properties and parameters
of the fractured rock masses. Thus, the challenge is to know how to develop an adequate model. The
model does not have to be complete or perfect, it just has to be adequate for the purpose.

For these reasons, rock mechanics” modeling and rock engineering design are both a science
and an art. They rest on a scientific foundation but require empirical judgments supported by
accumulated experiences through long-term practices. This is the case because the quantity and
quality of the supporting data for rock engineering design and analysis can never be complete, even
though they can be perfectly defined in models.

1.2 Numerical Modelling in Geomechanics

Some form of predictive capability is necessary in order to coherently design an engineered
structure, whether it is on the rock mass surface or within the underground rock mass, and whether it

- . . . . 1) . . . e {3 . - =
is for civil engineering ~addressed in this civil zone  review or for mining, petroleum or

environmental engineering. The predictive capability is achieved through a variety of modeling
methods. Even if one simply adopts the same design as a previously constructed structure, the rock
mass condition is generally site-specific and one should use a computer model adopted for the
specific site conditions to ensure that the rock mass is likely to behave in similar fashion.

As rock mechanics modeling has developed for the design of rock engineering structures with
widely different purposes, and because different modeling methods have been developed, we now
have a wide spectrum of modeling approaches. These can be presented in different ways: the
categorization into eight approaches based on four methods and two levels, as illustrated in Fig. 1.2,
is from (Hudson, 2001) %!

@ rock engineering: #47 T#%; @thermo-hydro-mechanical: Wl 3% — B — N 1. Srrock mechanics:
ERIF: @civil engineering: +A T2 G)Civil Zone: [E[X



The modeling and design work starts with the objective, the top box in Fig. 1.2. Then there are
the eight modeling and design methods in the main central box. The four columns represent the four

main modeling methods:
1) Method A: Design based on previous design experiences;
(2) Method B: Design based on simplified models ;

(3 Method C: Design based on modeling which attempts to capture most relevant mechanisms;

(4) Method D: Design based on “all-encompassing” modeling .

There are two rows in the large central box in Fig. 1.2 The top row, Level 1, includes methods

in which there is an attempt to achieve one-to-one mechanism mapping in the model. In other words,

a mechanism which is thought to be occurring in the rock reality and which is to be included in the

model is modeled directly, such as explicit stress—strain relations. Conversely, the lower row, Level

2, includes methods in which such mechanism mapping is not direct. The consequences of, for

example, the constitutive models and associated parameters may well be contained within the four

modeling and design methods in Level 2, but one cannot explicitly identify the relation within the

methodologies, e.g. in the rock mass classification techniques .

Objective

{1

Level 1
1:1 mapping

Method A Method B Method C Method D
Use of Analytical Basic numerical Extende<1l
pre-existing methods methods FEM, n:)::‘:z:)l;z
standard stress-based BEM, DEM, fully-coupled
. methods hybrid y P
Site models
.Invest- 1 | | [
igation
Precedent type Rock mass Pz;abase ext);]: n lntegratéd
analyses and classification | |* e‘mi or other systems
modifications | | RMR. Q. GSI systems _ approaches
approaches internet-based
S

Level 2
Not 1:1 mapping

et e

[Pesign based on forward analysi:m Design based on back analysis ]

U

Construction

Fig. 1.2 Four basic methods, two levels and hence eight different approaches to rock
mechanics modeling and rock engineering design, from Hudson %/,

Some supporting rock mass characterization parameters will be obtained from site investigation

(Usimplified models: H-—{¥#i%4, @all-encompassing’modeling: 4 M%), Srock mass classification

techniques: £ {A 7 K4k A

3
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the left-hand box. Then the rock engineering design and construction proceeds, with a feedback loop
to the modeling from construction.

An important point is that in rock mechanics and engineering design, having insufficient data is
a way of life, rather than a simple local difficulty, and those is why the empirical approaches (i.e.

classification systems) have been developed and are still required. Therefore, we will also be

elemental volume (REV) ', homogenization/up scaling, because these are fundamental problems

associated with modeling, and are relevant to the ABCD method categories in Fig 1.2,

The use of computers makes significant contributions to all the eight modeling and design
methods in Fig. 1.2; however, the specific numerical methods and approaches that are being
reviewed here are used directly in Methods 1C and 1D. Also, there is concentration on the actual
numerical methods (rather than computing per se or design per se) and discussion on the rock mass
characterization issues related to the numerical methods. Highlighted are the techniques, advances,
coupled mechanisms, technical auditing and the ability to present the content of the modeling, the
outstanding issues, and the future of this type of modeling. In short, highlighted is the special
contribution that numerical models are currently making to rock mechanics.

Because the focus of this Review is on the modeling concepts, the associated special features of
modeling rock fractures, the main development milestones, typical application requirements,
development trends, and outstanding issues of importance and difficulty, special attention is paid to
Section 3 for alternative formulations in each of the modeling methods, noting the potentials for rock
mechanics problems. It is hoped that this treatment will provide readers with a comprehensive
presentation of the state-of-the-art” of papers'”’* on numerical analysis in rock mechanics in
general, and civil engineering applications in particular—in terms of historical background, presents
status and likely future trends.
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