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Preface

In

this seventh edition, we continue on the path established in previous editions.

Quoting from the preface of the sixth edition, we “retain the same features that have

made the book popular: ease of reading so that the instructor does not have to ‘inter-

pret the book’ for the student, many illustrative examples that often solve the same

problem with different procedures to clarify the comparison of methods, many exer-

cises from which the instructor may choose appropriately for the class, more chal-

lenging problems and projects that show practical applications of the material.”

We have made substantial improvements on the previous edition. These include:

Theoretical matters that previously were in a separate section near the end of each
chapter have been merged with the description of the procedures.

Example computer programs that admittedly were not of professional quality
have been deleted, with the idea that this is not normally a programming course
anyway. Easy-to-read algorithms have been retained so that students can write
programs if they desire.

There is greater emphasis on computer algebra systems; MATLAB is the predom-
inant system, but this is compared with Mapie and Mathematica. The use of

spreadsheets to solve problems is covered as well.

"A new chapter on optimization (Chapter 6) has been added that includes multivari-

able cases as well as single-variable situations. Linear programming has been
included, of course, but the treatment is intended to provide a real understanding of

the simplex method rather than to merely give a recipe for solving the problem.



Preface ii

Nonlinear programming is treated to contrast this with the simpler linear case.
Boundary value problems for ordinary differential equations have been separated
from those for partial differential equations and are included in the chapter on ordi-
nary differential equations. Partial differential equations that satisfy boundary con-
ditions (elliptic equations) are combined with the other types of partial differential
equations in a single chapter.

Many exercises have been modified or rewritten to provide an even greater variety.
New exercises and projects have been added and some of these are more chaileng-
ing than in the previous edition. ,

As in previous editions, this book is unique in its inclusion of a thorough survey of
numerical methods for solving partial differential equations and an introduction to
the finite element method.

Many suggestions from reviewers have allowed us to clarify and extend the treat-
ment of several topics and we have made editorial changes to make the book eas-
ier to read and understand.

We again quote from the preface to the sixth edition:

Applied Numerical Analysis is written as a text for sophomores and juniors in
engineering, science, mathematics, and computer science. It should be a valuable
source book for practicing engineers. Because of its coverage of many numerical
methods, the text can serve as a valuablé reference.

Although we assume that the student has a good knowledge of calculus, appro-
priate topics are reviewed in the context of their use. An appendix gives a summary
of the most important items that are needed to develop and analyze numerical pro-
cedures. We purposely keep the mathematical notation simple for clarity. Further-
more, the answers to exercises marked with a B are found in the back of the text.
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Preliminaries

This book teaches how a computer can be used to solve problems that may not be
solvable by the techniques that are taught in most calculus and linear algebra
courses. It also shows how those problems that you may have solved before can be
solved in a different way. Our emphasis is on problems that exist in the real world,
although these examples will be simplified. Many of these simplified examples
can be solved analytically, which allows a comparison with the computer-derived
solution.

Modern mathematics began when Isaac Newton found mathematical models
that matched the empirical laws that Johannes Kepler had reached after about 20
years of observation of the planets. Today, most of applied mathematics is a rep-
etition of what Newton did: to develop mathematical relationships that can be
used to simulate some real-world situation and to predict its response to different
external factors.

The beauty of mathematics is that it builds on simple cases to arrive at more com-
plex and useful ones. This is true for this book — we start with mathematical applica-
tions that are easily understood but that become the basis for other, more important

applications of numerical analysis.



Chapter Zero: Preliminaries

We begin each chapter of this book with a list of the topics that are discussed in
that chapter. :

0.1

0.2

0.3

0.4

05

0.6

Analysis Versus Numerical Analysis .
Describes how numerical analysis differs f‘t'fomaﬁ’ﬂaiytical analysis and
shows where each has special advantages. It,bneﬂy lists the topics that

will be covered in later chapters.

Computers and Numerical Analysis

Explains why computers and numerical analysis aretintimately related.
It describes several ways by which a computer can be employed in

carrying out the procedures.

An Illustrative Example

Tells how a typical problém is solved and uses a special program called
a computer algebra system to obtain the solution.

Kinds of Errors in Numerical Procedures
Examines the important topic of the accuracy of computations and the
different sources of errors. Errors that are due to the way that computers

store numbers are examined in some detail.

Parallel and Distributed Computing
Explains how numerical procedui'és can sometimes be speeded up by
employing a number of computers working together on a problem.

Some special difficulties encountered are mentioned.

Measuring the Efficiency of Numerical Procedures

Tells how one can compare the accuracy of different methods, all of
which can accomplish a given task, and how they differ in their use of
computing resources. ‘
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0.1 Analysis Versus Numerical Analysis 3

Analysis Versus Numerical Analysis

The word analysis in mathematics usually means to solve a problem through equa-
tions. Of course, the equations must then be reduced to an answer through the proce-
dures of algebra, calculus, differential equations, partial differential equations, or the
like. Numerical analysis is similar in that problems are solved, but now the only pro-
cedures that are used are arithmetic: add, sub.tract, multiply, divide, and compare.
Since these operations are exactly those that computers can do, numerical analysis
and computers are intimately related.

An analytical answer is not always meaningful by itself. Consider this simple cubic

equation:
B¥=x-3x+3=0.

It is not hard to find the factors that show that one of the roots is ﬁ . That is fine,
unless you want to cut a board to that length. But rulers are not graduated in
square-root values. So what can you do? Maybe you have a calculator that lets you
find the value, or you might use logarithms, or look it up in a table. Numerical
analysis has a rich store of methods to find the answer by purely arithmetical
operations.

Here’s a challenge. You are on a desert island with nothing to work with but a
sharp stick that you can use to draw in the sand. You’ve forgotten everything
about mathematics except the four arithmetic operations and you can also com-
pare values (much like a computer). For some reason, maybe because you have
nothing more interesting to do, you want to get a good value for the cube root of
2. How would you go about this? One way would be trial and error: You try a set
of values to see which one gives a result of 2 when it is multiplied three times,

something like this:

1.22=1.728  too small

1.4% =2.744  too large
1.25% = 1.9531 pretty close
1.26% = 2.0004 really close!

This could go on for some time, but you begin to see that you could interpolate
between the last two trials and get an even better answer.

Now you say to yourself, “How good an answer do I really need? Maybe 1.26 is as
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close as I need. After all, when multiplied, 1.263 gives a result that differs from 2.0000
by a very small number, 0.0004.”

In this book, we will describe methods that can solve this little problem effi-
ciently and also methods for much more difficult ones. For example, this integral,

which gives the length of one arch of the curve y = sin(x), has no closed form

]E«(1+ cos?(x)dx.

Numerical analysis can compute the length of this curve by standardized methods

solution:

that apply to essentially any integrand; there is never a need to make a special
substitution or to do integration by parts. Further, the only mathematical opera-
tions required are addition, subtraction, multiplication, and division, plus doing
comparisons.

Another difference between a numerical result and the analytical answer is that the
former is always an approximation. Analytical methods usually give the result in
terms of mathematical functions that can be evaluated for a specific instance. This
also has the advantage that the behavior and properties of the function are often
apparent; this is not the case for a numerical answer. However, numerical results can
be plotted to show some of the behavior of the solution.

While the numerical result is an approximation, this can usually be as accurate as
needed. The necessary accuracy is, of course, determined by the application. The

/2 example suggests that the accuracy desired depends totally on the context of the
problem. (There are limitations to the achievable level of accuracy, because of the
way that computers do arithmetic; we will explain these limitations later.) To achieve
high accuracy, very many separate operations must be carried out, but computers do
them so rapidly without ever making mistakes that this is no significant problem.
Actually, evaluating an analytical result to get the numerical answer for a specific
application is subject to the same errors.

The analysis of computer errors and the other sources of error in numerical meth-
odsis a pﬁti’cally important part of the study of numerical analysis. This subject will
oceur often throughout this book.

Here are those operations that numerical analysis can do and that are covered in
this book:

Find where fix) = 0 for a nonlinear equation or system of equations.
Solve systems of linear equations, even large systems.



