mfr {

ﬂ@

C++ ?_51“ Fixit

PROGRAMMING IN C++

(Third Edition)

B Nell Dale
Chip Weems

-
'-'2++ R

FHIE.HA WY i 1l ++
B BF

% FHEEHET AR HE
ESMEEE RRF SRR B H

C++3z F i it

(B=RE ®ENRRD

PROGRAMMING IN C++
(Third Edition)

Nell Dale
Chip Weems

®

mEHBE LM
HIGHER EDUCATION PRESS

B . 01-2005-4685 5

Programming in C++, Third Edition
Nell Dale,Chip Weems

ORIGINAL ENGLISH LANGUAGE EDITION PUBLISHED BY
Jones and Bartlett Publishers, Inc.
40 Tall Pine Drive
Sudbury, MA01776

COPYRIGHT 2005

ALL RIGHTS RESERVED

For sale and distribution in the People’s Republic of China exclusively(except
Taiwan,Hong Kong SAR and Macao SAR).
DR THREARKMEEN(ERAAFEFEEE R IEITERNPES
EHX EE X7,
EREmS&B(CIP)&
C++ BJF It = Programming in C++: 3R/ (£)
] (Dale,N.), ()4 B (Weems,C.)

FHA., -dtH: S%HF Kt 2006.3
ISBN 7 - 04 - 019109- 1

I.Co N O @ II.CIHS—BFRt

—¥3x V. TP312
AR A B 454 CIP 308 4% 7 (2006) 85 022030 &
HARETT BEHF B mMEEE 010—58581118
H JERTHVEMX S A 4 B B 800—810—0598
HBEI4RES 100011 B #t http//www.hep.edu.cn
B # 010—58581000 http://'www. hep. com. cn
M _EiTH hitp:// . landraco.
B # SRR BRTARA [e eom .
£ Rl ALERRER) ttp://www. landraco. com. cn
WEEE http//www. widedu. com
F o &F 787x 1092 1/16 B & 20066E3 HE 1R
B % 4675 El M 200643 A% 1 EPRI

F ¥ 720000 E M 45000 hd

A A0 R BT BB BB DTS R (IR, 1 9 W PR Y B R R
HBEE ®RsR
WS 19109-00

T

Al

20 4K, DU EHLAEE HAR A RENE AR FEBEA S EREF. HE.
FHE HERAXMEFETREAYH. FERAFEANREERMBER, #HTH
REEEEFELNEHLE, Y EFFERERT FENER.

PN 21 4, ARHEFREMN WIO, BEFYHNERESHEMKN. &
EREELERE0HLKXBETRAELE, BE5XLERHEL, XZ50F. %
RELERMLL, RARAZE. BRELMHERBEEFAERZLNERE 6
J1, BABKHBATEEAFERAASGRERKE. SIREIMERERERK
FHNMN, EEFAGHERB DT RIELRRIGERE, BHETH N R AR
HRBWEEBEARAL RBRE —FHEELH.

A, BERERGBHERTHRHE LT RECRERERBEM AT #HR A
TH., BHEHTHEAER, —REFGAE, —RERKNE. EHSEHT HREM
ERRFEHRARMERANET N T, EXUREWRIE, 585 3HH 20 £/
EMOEHBENRR. XERMABREZA TS ZHFE, P AL RHERELH
FERFBEL ER. HRWE R ERRBRE AR FEARARFTHBORFESR,
RETENEFREERFZFERAEEN—RAT, TENBLERKEY, 5ENE
KA gAY,

RBEEMGH#ATHERERTFRHEXFTAREGHRENARART, dERER
HEBARFENER. #2455, EXARESIEM#TES A BH N ER L,
SETENMENFEL AFRXELHRBEREHRTRATI S, 4, John Wiley
B AR U 20 F 45 BB 55 F 0 Bl & 3 Silberschatz 33 th £ 3 ¥ 4k (R 1E
REBMA), REMNEIRARHA, M TIRELHAHBUL5|#H. William Stallings
EEYRE TEXERZRANERMNFHARRINEMN, AL AEMA KBTS
E#M Y REEE B LFRLN T EN S TREM K, IHEIHEMFRAR
W ARFNE, FXPEFH Jiawei Han B4 B (BREXEY RZF S P LA ER8
BXWEIE., HA%F ¥ B Thomas Cormen F R E B T ¥ 8. Tt T A%H)L

UFEREAREFNEREEC(EZED), BEFT 11 £HE%2E T 2001 £H K
T#ZJR. A% T £ E Massachusetts & ¥ 8 James Kurose # 1%, ¥ % £E =
BRAEE 10 KRBAEHITRA L HFE R, lﬁf&i%ﬁ{] CGHEMN %Y BEE, MU
HERFH. WEALATEEI R, EFIBRESIARMENTE, BERTHEK
HETAERERG T, XET) HNRMEIT RS, E44. SRS HF
PR

HEHOFLENESGEEFRRSE LT T, EREH*FERERA
BEMEEFYNAR. BNESHFEHRATES, TERERSHE #E 5
RAFHHM, TELETHE IR L FE TR, B SHMHNBE
EIWESREMA Y, WL AR TR L fEEE. PENKTTHEK, SEHK
A FE A H R ERRY AKX TR ERERS.

TS| BB B, RATEBBEFH R, &% S E s e Y B A
BETE, REGERBEMEKT, ERNGEFRNENTKRE L, EERES
BWEE L, EXEFFLNNFEY LA AN RPN,

BR, HEREALE S FIERED T ERREF RN ELALHE, X2
BREREEHFERASWEEER Y - FHANKSGYBRETR TREALAER
RENNSHAEREAL, SENRLERREL OV AEFF, LWERIIESL IT
D R F RN, BEEANM LRSS RISE, TEREGEA A%
IR

RMA LB LR, BERENRE, YREEA - ANBRENLEEHR
RAL, REKERUALSHERES S, RAREEEZ byt LB, Mk
HERERAHAR, ATHHENTREFNBHRRLE.

HEBBERTE
ZOO0Z4ZH

\Preface)

no-frills introduction to C++. Throughout the successive editions of this book, one

thing has not changed: our commitment to the student. As always, our efforts are
directed toward making the sometimes difficult concepts of computer science more
accessible to all students.

This edition of Programming in C++ continues to reflect our philosophy that topics
once considered too advanced can be taught in the first course. For example, we address
metalanguages explicitly as the formal means of specifying programming language syn-
tax. We discuss modular design in terms of abstract steps, concrete steps, functional
equivalence, and functional cohesion. Preconditions and postconditions are used in the
context of the algorithm walk-through, in the development of testing strategies, and as
interface documentation for user-written functions. Data abstraction and abstract data
types (ADTs) are explained in conjunction with the C++ class mechanism, creating a
natural lead-in to object-oriented programming,.

ISO/ANSI-standard C++ is used throughout the book, including relevant portions of
the new C++ standard library.

The first two editions of Programming in C++ have provided a straight-forward,

Changes to the Third Edition

The third edition does not introduce additional C++ syntax nor change the order of the
content. What we have done is completely revamp the goals, the case studies, and the
exercises. In addition, beginning with Chapter 13, the language of the material has
become more object oriented.

vi

| Preface

Goals The chapter goals have been reorganized to reflect two aspects of learning:
knowledge and skills. Thus, the goals are divided into twe sections. The first lists the
knowledge goals, phrased in terms of what the student should know after reading the
chapter. The second lists what the student should be able to do after reading the chapter.

Programming Examples Each chapter has a completely new programming example.
Programming examples that begin with a problem statement and end with a tested
program have been the hallmark of our books. In this edition, we have added screen
shots of the output for each of the examples.

All of the exercises are new in this edition. The number of exercises has been
expanded by between twenty and thirty percent. All of the programming problems are
new.

Object-Oriented Language The List ADT in Chapter 13 has been changed by removing
the Print operation and introducing an iterator pair, Reset and GetNextItem. This
change provides better encapsulation. The list does not need to know anything about
the items that it contains. The list simply returns objects to the client program, which
should know what the objects are. The flaw in this design is pointed out in Chapter 14:
The Delete and BinSearch operations use the relational operators, limiting the type of
item to built-in types. In this chapter, the relational operators are replaced by operations
LessThan and Equal; the documentation states that ItemType must implement these
operations. The concepts of action responsibilities and knowledge responsibilities also
are discussed. Each class is independently tested, stressing the importance of testing.

C++ and Object-Oriented Programming

Some educators reject the C family of languages (C, C++, Java) as too permissive and
too conducive to writing cryptic, unreadable programs. Our experience does not support
this view, provided that the use of language features is modeled appropriately. The fact
that the C family permits a terse, compact programming style cannot be labeled simply
as “good” or “bad”. Almost any programming language can be used to write in a style
that is too terse and clever to be easily understood. The C family indeed may be used in
this manner more often than are other languages, but we have found that with careful
instruction in software engineering, and a programming style that is straightforward,
disciplined, and free of intricate language features, students can learn to use C++ to
produce clear, readable code.

It must be emphasized that although we use C++ as a vehicle for teaching computer
science concepts, the book is not a language manual and does not attempt to cover all
of C++. Certain language features—templates, operator overloading, default arguments,
run-time type information, and mechanisms for advanced forms of inheritance, to name
a few—are omitted in an effort not to overwhelm the beginning student with too much,
too fast. _

There are diverse opinions about when to introduce the topic of object-oriented
programming (OOP). Some educators advocate an immersion in OOP from the very
beginning, whereas others (for whom this book is intended) favor a more heterogeneous
approach, in which both functional decomposition and object-oriented design are pre-

Preface

sented as design tools. The chapter organization of Programming in C++ reflects a tran-
sitional approach to OOP. Although we provide an early preview of object-oriented
design in Chapter 4, we delay a focused discussion until Chapter 14, after students have
acquired a firm grounding in algorithm design, control abstraction, and data abstraction
with classes. '

Synopsis

Chapter 1 is designed to create a comfortable rapport between students and the subject.
The basics of hardware and software are presented, and problem-solving techniques are
introduced and reinforced in a problem-solving case study.

Instead of overwhelming the student right away with the various numeric types
available in C++, Chapter 2 concentrates on only two types: char and string. (For the
latter, we use the ISO/ANSI string class provided by the standard library.) With fewer
data types to keep track of, students can focus on overall program structure and get an
earlier start on creating and running a simple program. Chapter 3 follows with a discus-
sion of the C++ numeric types and proceeds with material on arithmetic expressions,
function calls, and output. Unlike many books that detail all of the C++ data types and
all of the C++ operators at once, these two chapters focus on only the int, float,
char, and string types, and the basic arithmetic operators. Details of the other data
types, and the more elaborate C++ operators, are postponed until Chapter 10.

Functional decomposition and object-oriented design methodologies are a major
focus of Chapter 4, and the discussion is written with a healthy degree of formalism.
The treatment of object-oriented design this early in the book is more superficial than
that of functional decomposition. However, students gain the perspective early that
there are two-not just one-design methodologies in widespread use and that each
serves a specific purpose. Object-oriented design is covered in depth -in Chapter 14.
Chapter 4 also covers input and file I/0. The early introduction of files permits the
assignment of programming problems that require the use of sample data files.

Students learn to recognize functions in Chapters 1 and 2, and they learn to use
standard library functions in Chapter 3. Chapter 4 reinforces the basic concepts of func-
tion calls, argument passing, and function libraries. Chapter 4 also relates functions to
the implementation of modular designs, and begins the discussion of interface design
that is essential to writing proper functions.

Chapter 5 begins with Boolean data, but its main purpose is to introduce the con-
cept of flow of control. Selection, using If-Then and If-Then-Else structures, is used to
demonstrate the distinction between physical ordering of statements and logical order-
ing. We also develop the concept of nested control structures. Chapter 5 concludes with
a lengthy Testing and Debugging section that expands oh the modular design discussion
by introducing preconditions and postconditions. The algorithm walk-through and code
walk-through are introduced as means of preventing errors, and the execution trace is
used to find errors that may have made it into the code.

Chapter 6 is devoted to loop control strategies and looping operations using the
syntax of the While statement. Rather than introducing multiple syntactical structures,
our approach is to teach the concepts of looping using only the While statement. How-
ever, because many instructors have told us that they prefer to show students the syntax

!

vii

viii

Preface

for all of C++'s looping statements at once, the discussion of For and Do-While state-
ments in Chapter 9 can be covered after Chapter 6.

By Chapter 7, students are already comfortable with breaking problems into mod-
ules and using library functions, and they are receptive to the idea of writing their own
functions. Thus Chapter 7 focuses on passing arguments by value and covers flow of
control in function calls, arguments and parameters, local variables, and interface
design. Coverage of interface design includes preconditions and postconditions in the
interface documentation, control abstraction, encapsulation, and physical versus con-
ceptual hiding of an implementation. Chapter 8 expands the discussion to include refer-
ence parameters, scope and lifetime, stubs and drivers, and more on interface design,
including side effects.

Chapter 9 covers the remaining “ice cream and cake” control structures in C++
(Switch, Do-While, and For), along with the Break and Continue statements. These
structures are useful but not necessary. Chapter 9 is a natural ending point for the first
quarter of a two-quarter introductory course sequence.

Chapter 10 begins the transition between the control structures orientation of the
first part of the book and the abstract data type orientation of the second part. We
examine the built-in simple data types in terms of the set of values represented by each
type and the allowable operations on those values. We introduce additional C++ opera-
tors and discuss at length the problems of floating-point representation and precision.
User-defined simple types, user-written header files, and type coercion are among the
other topics covered in this chapter.

We begin Chapter 11 with a discussion of s1mp1e versus structured data types. We
introduce the record (struct in C++) as a heterogeneous data structure, describe the syn-
tax for accessing its components, and demonstrate how to combine record types into a
hierarchical record structure, From this base, we proceed to the concept of data abstrac-
tion and give a precise definition to the notion of an ADT, emphasizing the separation
of specification from implementation. The C++ class mechanism is introduced as a pro-
gramming language representation of an ADT. The concepts of encapsulation, informa-
tion hiding, and public and private class members are stressed. We describe the separate
compilation of program files, and students learn the technique of placing a class’s dec-
laration and implementation into two separate files: the specification (.h) file and the
implementation (.cpp) file.

In Chapter 12, the array is introduced as a homogeneous data structure whose com-
ponents are accessed by position rather than by name. One-dimensional arrays are
examined in depth, including arrays of structs and arrays of class objects. Material on
multidimensional arrays completes the discussion.

Chapter 13 integrates the material from Chapters 11 and 12 by deﬁmng the list as
an ADT. Because we have already introduced classes and arrays, we can clearly distin-
guish between arrays and lists from the beginning. The array is a built-in, fixed-size
data structure. The list is a user-defined, variable-size structure, represented in this
chapter as a length variable and an array of items bound together in a class object. The
elements in the list are those elements in the array from position 0 through position
length 2 1. In this chapter, we design C++ classes for unsorted and sorted list ADTs, and

Preface

we code the list algorithms as class member functions. Finally, we examine C strings in
order to give students some insight into how a higher-level abstraction (a string as a list
of characters) might be implemented in terms of a lower-level abstraction (a null-termi-
nated char array).

Chapter 14 extends the concepts of data abstraction and C++ classes to an explo-
ration of object-oriented software development. Object-oriented design, introduced briefly
in Chapter 4, is revisited in greater depth. Students learn to distinguish between inheri-
tance and composition relationships during the design phase, and C++'s derived classes
are used to implement inheritance. This chapter also introduces C++ virtual functions,
which support polymorphism in the form of run-time binding of operations to objects.

Chapter 15 concludes the text with coverage of recursion. There is no consensus as
to the best place to introduce this subject. We believe that it is better to wait until at
least the second semester to cover it. However, we have included this material for those
instructors who have requested it. We suggest the following prerequisite reading for the
topics in Chapter 15:

Section(s) Topic Prerequisite
15.1-15.3 Recursion with simple variables Chapter 8
15.4 Recursion with arrays Chapter 12

Additional Features

Goals As described earlier, each chapter begins with a list of goals for the student,
broken into two categories: knowledge goals and skill goals. They are reinforced and
tested in the end-of-chapter exercises.

Programming Examples Problem solving is demonstrated through examples. In each
example, we present a problem and use problem-solving techniques to develop a
manual solution. Then we code the algorithm in C++. We show sample test data and
output and follow up with a discussion of wht is involved in thoroughly testing the
program.

Testing and Debugging Testing and debugging sections follow the programming
examples in each chapter and consider in depth the implications of the chapter material
with regard to thorough testing of programs. These sections conclude with a list of
testing and debugging hints.

Quick Checks At the end of each chapter are questions that test the student’s recall of
major points associated with the chapter goals. Upon reading each question, the student
immediately should know the answer, which he or she can then verify by glancing at
the answers at the end of the section. The page number on which the concept is
discussed appears at the end of each question so that the student can review the
material in the event of an incorrect response.

Preface

Exam Preparation Exercises These questions help the student prepare for tests. The
questions usually have objective answers and are designed to be answerable with a few
minutes of work. Answers to selected questions are given in the back of the book, and
the remaining questions are answered in the Instructor’s Guide.

Programming Warm-Up Erercises This section provides the student with experience in
writing C++ code fragments. The student can practice the syntactic constructs in each
chapter without the burden of writing a complete program. Solutions to selected
questions from each chapter appear in the back of the book; the remaining solutions
can be found in the Instructor’s Guide.

Programming Problems These exercises, drawn from a wide range of disciplines, require
the student to design solutions and write complete programs. :

Programming Example Follow-Up Much of modern programming practice involves
reading and modifying existing code. These exercises give the student an opportunity to
strengthen this critical skill by answering questions about the example code or by
making changes to it. All of the solutions to these exercises are in the Instructor's
Guide, rather than the text, allowing the instructor the flexibility of assigning them as
programming problems,

Supplements

Instructor’s Guide and Test Bank The Instructor’s Guide features chapter-by-chapter
teaching notes, answers to the balance of the exercises, and a compilation of exam
questions with answers. The Instructor’s Guide, included on the Instructor’s ToolKit, is
available to adopters on request from Jones and Bartiett.

Instructor’s ToolKit The Instructor’s ToolKit is a powerful teaching tool available to
adopters upon request from the publisher. It contains an electronic version of the
Instructor’s Guide, a computerized test bank, PowerPoint lecture presentations, and the
complete programs from the text.

Programs The programs contain the source code for all of the complete programs that
are found within the textbook. They are available on the Instructor’s ToolKit, and also
as a free download for instructors and students from the publisher's website
(bttp://computerscience. jbpub.com/cs_resources. cfm). The programs from all
of the programming examples, pius complete programs that appear in the chapter
bodies, are included. (Fragments or snippets of program code are not included nor are
the solutions to the chapter-ending “Programming Problems.”) The program files can be
viewed or edited using any standard text editor, but a C++ compiler must be used in

order to compile and run the programs. The publisher offers compilers bundled with this
text at a substantial discount.

Preface

Companion Website This website (www.problemsolvingepp.jbpub.com) features the
complete programs from the text.

A Laboratory Course in C++, Fourth Edition Written by Nell Dale, this lab manual
follows the organization of this edition of the text. The lab manual is designed to
allow the instructor maximum flexibility and may be used in both open and closed
laboratory settings. Each chapter contains three types of activities: Prelab, Inlab, and
Postlab. Each lesson is broken into exercises that thoroughly demonstrate the
concepts covered in the corresponding chapter. The programs, program shells (partial
programs), and data files that accompany the lab manual can be found on the website
for this book (www.problemsolvingepp. jbpub. com).

Acknowledgments

We would like to thank the many individuals who have helped us in the preparation of
this third edition. We are indebted to the members of the faculties of the Computer Sci-
ence Departments at the University of Texas at Austin and the University of Massachu-
setts at Amherst.

We extend special thanks to Jeff Brumfield for developing the syntax template
metalanguage and allowing us to use it in the text.

For their many helpful suggestions, we thank the lecturers, teaching assistants, con-
sultants, and student proctors who run the courses for which this book was written, as
well as the students themselves.

We are grateful to the following people who took the time to offer their comments
on potential changes for previous editions: Trudee Bremer, Illinois Central College; Mira
Carlson, Northeastern Iilinois University; Kevin Daimi, University of Detroit, Mercy;
Bruce Elenbogen, University of Michigan, Dearborn; Sandria Kerr, Winston-Salem State
University; Alicia Kime, Fairmont State College; Shahadat Kowuser, University of Texas,
Pan America; Bruce Maxim, University of Michigan, Dearborn; William McQuain, Vir-
ginia Tech; Xiannong Meng, University of Texas, Pan America; William Minervini,
Broward University; Janet Remen, Washtenaw Community College; Viviana Sandor,
Oakland University; Mehdi Setareh, Virginia Tech; Katy Snyder, University of Detroit,
Mercy; Tom Steiner, University of Michigan, Dearborn; John Weaver, West Chester Uni-
versity; Charles Welty, University of Southern Maine; Cheer-Sun Yang, West Chester
University.

We also thank Mike and Sigrid Wile, along with the many people at Jones and
Bartlett who contributed so much, especially Stephen Solomon and Anne Spencer. Our
special thanks go to Amy Rose, our Production Manager, whose skills and genial nature
turn hard work into pleasure.

Auyone who has ever written a book—er is related to someone who has—can appre-
ciate the amount of time involved in such a project. To our families—all of the Dale clan
and the extended Dale family (too numerous to name), and to Lisa, Charlie, and Abby—
thanks for your tremendous support and indulgence.

N.D.
cw.

xi

Preface v

Overview of Programming and Problem Solving 1

1.1

1.2
1.3
1.4

Overview of Programming 2

How Do We Write a Program? 2
What is a Programming Language? 6
What is a Computer? 11
Problem-Solving Techniques 14

Ask Questions 15

Look For Things That Are Familiar 15

Solve by Analogy 15

Means-Ends Analysis 16

Divide and Conquer 17

The Building-Block Approach 18

Merging Solutions 18

Mental Blocks: The Fear of Starting 19

Algorithmic Problem Solving 19
Summary 20

Quick Check 21

Exam Preparation Exercises 21

Programming Warm-Up Exercises 23

Xiv | Contents

E C++ Syntax and Semantics, and the Program
Development Process 25

2.1

2.2

2.3

The Elements of C++ Programs 26
Syntax and Semantics 28
Syntax Templates 30
Naming Program Elements: 1dentifiers 32
Data and Data Types 33
Data Storage 34
The char Data Type 34
The string Data Type 34
Naming Elements: Declarations 35
Taking Action: Executable Statements 40
Beyond Minimalism: Adding Comments to a Program
Program Construction 45
Blocks (Compound Statements) 47
The C++ Preprocessor 49
An Introduction to Namespaces 50
More About Output 52
Creating Blank Lines 52
Inserting Blanks Within a Line 53
Programming Example 54
Testing and Debugging 59
Summary 60 '
Quick Check 60
Exam Preparation Exercises 62
" Programming Warm-Up Exercises 64
Programming Problems 66
Programming Example Follow-Up 67

3 Numeric Types, Expressions, and Output 70

3.2

n

Integral Types 70

Floating-Point Types 71
Declarations for Numeric Types 71

Named Constant Declarations 72

44

3.3

3.4

3.5

3.6
3.7

Contents

Variable Declarations 73
Simple Arithmetic Expressions 73
Arithmetic Operators 73
Increment and Decrement Operators 76
Compound Arithmetic Expressions 77
Precedence Rules 77
Type Coercion and Type Casting 79
Function Calls and Library Functions 82
Value-Returning Functions 82
Library Functions 84
Void Functions 85
Formatting the Qutput 86
Additional string Operations 92
The length and size Functions 92
The £ind Function 94 ‘
The substr Function 95
Programming Example 97
Testing and Debugging 100
Summary 100
Quick Check 101
Exam Preparation Exercises 102
Programming Warm-Up Exercises 104
Programming Problems 105
Programming Example Follow-Up 107

Program Input and the Software Design Process 109

4.1

4.2
4.3
4.4

Getting Data into Programs 110
Input Streams and the Extraction Operator (>>) 110
The Reading Marker and the Newline Character 113
Reading Character Data with the get Function 114
Skipping Characters with the ignore Function 116
Reading String Data 117

Interactive Input/Output 118

Noninteractive Input/Output 120

File Input and Output 121
Files 121

xvi

Contents

Using Files 122
An Example Program Using Files 125
Run-Time Input of File Names 127
4.5 Input Failure 128
4.6 Software Design Methodologies 130
4.7 What Are Objects 131
4.8 Object-Oriented Design 132
4.9 Functional Decomposition 133
Modules 135
Programming Example 137
Testing and Debugging 141
Testing and Debugging Hints 142
Summary 143
Quick Check 144
Exam Preparation Exercises 144
Programming Warm-Up Exercises 147
Programming Problems 149
Programming Example Follow-Up 151

Conditions, Logical Expressions, and Selection Control
Structures 153
5.1 Flow of Control 154

Selection 155
5.2 Conditions and Logical Expressions 155

The bool Data Type 156

Logical Expressions 156

Precedence of Operators 163

Relational Operators with Floating-Point Types 164
5.3 The If Statement 165

The If-Then-Else Statement 165

Blocks (Compound Statements) 168

The 1f-Then Statement 169

A Common Mistake 170
5.4 Nested If Statements 171

The Dangling else 174

