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Chapter 1 Introduction To
Coordination Chemistry

1.1 The History of Coordination Chemistry

1.1.1 The Early History of Coordination Chemistry

One of the most productive areas of research in the twentieth century was Alfred
Werner’s development of coordination chemistry. It is a measure of Werner’s impact on the
realm of inorganic chemistry that the number, variety, and complexity of coordination com-
pounds continues to grow even as we pass the centennial anniversary of his original work.

The first coordination compound was most likely prepared in the late 1700s by Tassaert,
a French chemist. He observed that ammonia combined with a cobalt ore to yield a reddish
brown product. Over the next century, many compounds were synthesized and character-
ized, but little progress was made in formulating and accounting for their molecular struc-
tures (Fig 1.1). The discovery and explanation of coordination compounds should be
viewed against the larger picture of progress in understanding atomic structure, the periodic

table, and molecular bonding.

. THa 34
[Cu(NHs)(1**  Fe[Fe(CN)sJa HaNy, o NHa
Libau 1597 Anonymous 1731 HyN"" |°\NH3
NH;
Tassaert 1798
CN 3=
HiNy - NHs 9% CN Al 9% NCy, | W ON
Pd Pd (CO\
H,N~ \NH; c” \al NC! l CN
CN
Vauquelln 1813 Gmelin 1822
[ N ]’ [ RN ] [ 0C ;8 CO ]H
v
c N\l H,N ¢l ocC I\CO
Zeisse 1827 Peyrone 1844 Mond 1890

Fig1.1 Some important compounds as landmarks in inorganic chemistry

The contributions of Proust and Lavoisier, among others, led Dalton to formulate the
first concrete atomic theory in 1808. Mendeleev published his first periodic table in 1869,
With the discoveries of X rays, radioactivity, electrons, and the nucleus at the beginning of
the twentieth century, the modern quantum-mechanical picture of the atom started to
emerge in the 1920s. This model gives a theoretical explanation for atomic line spectra and
the modern periodic table. However, no theoretical basis was developed to satisfactorily ac-

1



count for these wondrous compounds at that time,

Given the success of organic chemists in describing the structural units and fixing atomic
valences found in carbon-based compounds, it was natural that these ideas be applied to the
ammonates. The results, however, were disappointing; for example, considering the typi-
cal data for the cobalt ammonate chlorides listed in the Table 1. 1. The formulas used in the

last few decades of the nineteenth century indicated the ammonia-to-cobalt mole ratio but left

Table 1.1 The cobalt ammenate chlorides

Formula Conductivity No. of Cl~ ions precipitated
CoCls + 6NH; High
CoCl; « SNH;3 Medium 2
CoCl; « 4NH; Low 1
IrCl; « 3NH; Zero 0

the nature of the bonding between them to the imagination. This uncertainty was reflected
in the dot used in the formula to connect, for example, CoCl; to the appropriate number of
ammonias. Conductivities measured when these compounds were dissolved in water are giv-
en qualitatively, which was just then starting to be taken as a measure of the number of ions
produced in solution. The “number of chloride ions precipitated” was determined by the ad-
dition of aqueous silver nitrate, as represented in (equation 1. 1)
AgNO; (ag) +Cl™ (ag)—= AgCl(s) +NOj (aq) (1. D
Now how might you explain such data? In 1869, Christian Wilhelm Blomstrand firstly
formulated his theory to account for the cobalt ammonate chlorides and other series of am-

monates. He produced a picture of CoCl; « 6NH; have shown in Fig 1. 2 (a).

NH;—Cl
(1) CoCls - 6NH3 Co—/—NHg—NHg—NHg——NH3—C1
NH;—Cl
Cl
(2) CoCl; » 5NH;3 CO/—NH;;'.*NH;;—NH:;—NH:;_CI
NH,;—Cl!
Ci
/NH3—NH3-—C1 (3) CoCl; » 4NH; Coi—NHa—NHz——NHg——NHg—Cl
CoCl; + 6NH; Co—NH;—NH;—Cl cl
AN <
NH;—NH;—Cl /Ll
(4) ItCl; « 3NH; Ir—NH;—NH;—NH;—Cl
\Cl
(a) Blomstrand’s representation of CoCly « 6NHj (b) Jorgensen’s representations of four members of the

series with the iridium subsitituted for the

intended cobalt in compound (4)

Fig 1.2 Representations of the cobalt ammonate chlorides by Blomstrand and Jorgensen

Based on the prevailing ideas of the time, this was a perfectly reasonable structure.
The divalent ammonia he proposed was consistent with a view of ammonium chloride written
as H—NH3;—Cl. The valence of 3 for cobalt was satisfied and nitrogen atoms were chained

2



together much like carbon in organic compounds. The three monovalent chlorides were far
enough removed from the cobalt atom to be available to be precipitated by aqueous silver
chloride.

In 1884, S. M. Jorgensen proposed some amendments to his mentor’s picture (Table
1. 2). First, he had new evidence that correctly indicated that these compounds were mono-
meric. Second, he adjusted the distance of the chloride groups from the cobalt to account
for the rates at which various chlorides were precipitated. The first chloride is precipitated
much more rapidly than the others and so was put farther away and therefore less under the
influence of the cobalt atom. His diagrams for the first three cobalt ammonate chlorides are
shown in Fig 1.2 (b). Note that, in the second compound, one chloride is now directly at-
tached to the cobalt, therefore, unavailable to be precipitated by silver nitrate. In the third
compound, two chlorides are similarly pictured. These changes are significant, It appeared
that the Blomstrand-Jgrgensen theory was on the right track.

But was there a compound with only three ammonias? As shown in Fig 1.2 (b) (4),
the theory predicted that it should exist and, furthermore, should have one ionizable chlo-
ride. But this critical compound was not available. After considerable time and effort, the
analogous iridium ammonate chloride was found to be a neutral compound with no ionizable
chlorides. The theory was in trouble.

Table 1. 2 The historical setting of coordination compeunds

Atomic structure and the periodic table Molecular structure and bonding Coordination chemistry
1750
1774 :Law of conservation of mat- 1798, First cobalt
ter; Lavoisier ammonates observed:
1799:Law of definite composition: Tassaert
Proust
1800
1808 Dalton’s atomic theory pub- 1830: The radical theory of struc- 1822,Cobalt ammonate
lished in New System of ture: Liebig, Wohler, Berzeli- oxalates prepared: Gmelin
Chemical Philosophy us, Dumas (organic compounds
composed of methyl, ethyl,
etc, radicals) 1851:CoCl; + 6NH;, CoCl; « 5NHs,
1852 ; Concept of valence: Frankland and other cobalt ammonates pre-
(all atoms have a fixed va- pared : Genth, Claudet, Fremy
lence)

1854; Tetravalent carbon atom:

Kekulé

1859 ;: Spectroscope developed:

Bunsen and Kirchhoff
1869 : Mendeleev's first periodic ta- 1869: Chain theory of ammonates:

ble organizes 63 known ele- 1874, Tetrahedral carbon atom: Le Blomstrand

ments Bel and Van’t Hoff

1884 ; Dissociation theory of electro- 1884: Amendments to chain theory;

1885 ; Balmer formula for visible H lytes; Arrhenius Jorgensen

spectrum
1894 : First “inert gas”discovered 1892 ;. Werner's dream about coordina-
1895: X-rays discovered; Roentgen tion compounds
1896 ; Radioactivity discovered:

Becquerel




Continued

Atomic structure and the periodic table Molecular structure and bonding Coordination chemistry
1900
1902 Discovery of the electron: 1902 ; Three postulates of coordination
Thomson theory proposed; Werner
1905: Wave-particle duality of 1911, Optical isomers of cis-[ CoCl
light: Einstein 1923 Electron-dot diagrams:Lewis (NH;) (en); ]X; resolved: Wer-
1911, a-particle/gold foil experi- 1931: Valence-bond theory: Pauling, ner
ment; nuclear model of the Heitler, London, Slater 1914 ; Non-carbon-containing optical i-
atom: Rutherford Early 1930s: Molecular orbital theo- somers resolved; Werner
1913: Bohr model of the atom ry: Hund, Bloch, Mulliken, 1927;Lewis ideas applied to coordina-
( quantization of electron Hiickel tion compounds; Sidgwick
energy) 1940 Valence-shell electron-pair re- 1933; Crystal field theory: Bethe and
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1.1.2 The Modern Coerdination Chemistry Werner Coordination Chemistry

Alfred Werner (1866—1919), as a young unsalaried lecturer in organic chemistry, was
torn between organic and inorganic chemistry. His first contributions (the stereochemistry,
or spatial arrangements, of atoms in nitrogen compounds) were in the organic field, but so
many intriguing inorganic questions were being raised in those days. He observed the diffi-
culties that inorganic chemists were having in explaining coordination compounds, and he
was aware that the established ideas of organic chemistry seemed to lead only into blind al-
leys and dead ends. In 1892, his coordination theory came to him. But his new theory broke with
the earlier traditions, and he had essentially no experimental proof to support his ideas. Werner’s
theory was considered to be audacious fiction, Werner spent the rest of his life directing a systemat-
ic and thorough research program to prove that his intuition was correct.

Werner decided that the idea of a single fixed valence could not apply to cobalt and other
similar metals. Working with the cobalt ammonates and other related series involving chro-
mium and platinum, he proposed instead that these metals have two types of valence, a pri-
mary valence and a secondary valence. The primary, or ionizable, valence corresponded to
what we call today the oxidation state; for cobalt, it is the 3+ state. The secondary va-
lence is more commonly called the coordination number; for cobalt, it is 6. Werner main-
tained that this secondary valence was directed toward fixed geometric positions in space.

Fig 1. 3 shows Werner’s early proposals for the bonding in the cobalt ammonates. He
said that the cobalt must simultaneously satisfy both its primary and secondary valences.
The solid lines show the groups that satisfy the primary valence. The dashed lines, always
directed toward the same fixed positions in space, showing how the secondary valence was
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Fig 1.3 Werner's representations of the cobalt ammonate chlorides. The solid lines represent

groups that satisfy the primary valence or oxidation state (34 ) of cobalt, and the dashed

lines represent those that satisfy the secondary valence, or coordiantion number (6). The

secondary valence occupies fixed positions in space
satisfied. In compound (1), all three chlorides satisfy only the primary valence, and the six
ammonias satisfy only the secondary. In compound (2), one chloride must do double duty
and help satisfy both valences. The chloride that satisfies the secondary valence (and is di-
rectly bound to the Co®tion) was concluded to be unavailable for precipitation by silver ni-
trate. Compound (3) has two chlorides doing double duty and only one available for precipi-
tation. Compound (4), according to Werner, should be a neutral compound with no ioniz-
able chlorides. This was exactly what Jergensen had found with the iridium compound.

Werner next turned to the geometry of the secondary valence (or coordination number).

As shown in Table 1. 3, six ammonias about a central metal atom or ion might assume one of
several different common geometries, including hexagonal planar, trigonal prismatic, and
octahedral. The table compares some information about the predicted and actual number of

isomers for a variety of substituted coordination compounds.

Table 1.3 The number of actual versus predicted isomers for three different geometries

Geometries of Coordination Number 6
Hexagonal Trigonal
planar prism Octahedral

1
6@2 | 2
5—M—3
5 L 3 4 é
No. of predicted isomers (numbers in parentheses No. of
Formula indicate position of the B ligands) fwtual
isomers
MAsB One One One One
MA(B; Three Three Two Two
(1,2) (1,2) 1,2)
(1,3) (1,4 (1,6)
(1,4) (1,6)
MA;B; Three Three Two Two
a1,2,3) a,z2,3 1,2,3
1,2,4) (1,2,4) (1,2,6)
(1,3,5) (1,2,6)

A few comments about the information in this table needed to be given before discussing.

(1) The symbols for the compounds use M for the central metal and A’s and B’s for the various lig-

ands. (2) The numbers in parentheses for each isomer refer to the relative positions of the B ligands.

Isomers are defined here as compounds that have the same numbers and types of chemi-
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