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in Euclidean Spaces
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Preface

The original version of this article was written more than five years ago with
S.Z. Shefel’, a profound and original mathematician who died in 1984. Since then
the geometry of surfaces has continued to be enriched with ideas and results.
This has required changes and additions, but has not influenced the character of
the article, the design of which originated with Shefel’. Without knowing to what
extent Shefel’ would have approved the changes, I should nevertheless like to
dedicate this article to his memory. (Yu.D. Burago)

We are trying to state the qualitative questions of the theory of surfaces in
Euclidean spaces in the form in which they appear to the authors at present. This
description does not entirely correspond to the historical development of the
subject. The theory of surfaces was developed in the first place mainly as the
theory of surfaces in three-dimensional Euclidean space E>; however, it makes
sense to begin by considering surfaces F in Euclidean spaces of any dimension
n > 3. This approach enables us, in particular, to put in a new light some
unsolved problems of this developed (and in the case of surfaces in E? fairly
complete) theory, and in many cases to refer to the connections with the present
stage of development of the theory of multidimensional submanifolds.

The leading question of the article is the problem of the connection between
classes of metrics and classes of surfaces in E". The first chapter is a brief survey
of general questions in the theory of surfaces from this point of view. Chapters
2 and 3 are devoted to a more detailed consideration of convex and saddle
surfaces respectively. The subject of Chapter 4 consists of classes of metrics not
associated directly with the condition that the Gaussian curvature has a definite
sign, and G-stable immersions of them.

A whole series of important questions in the theory of surfaces remain outside
the framework of the article. We only touch on questions of the purely extrinsic
geometry of surfaces. This applies above all to the most developed and complete
theory of convex surfaces. Thus, the geometric theory of equations (basically
of Monge-Ampére type) is only recalled, and there is no description of exis-
tence and uniqueness theorems for surfaces with given conditional curvatures.
The reader can become acquainted with these questions from the monographs
Bakel’'man, Verner and Kantor (1973), Pogorelov (1969), Pogorelov (1975). We
do not consider boundary-value problems of the theory of bending of convex
surfaces, infinitesimal bendings of high orders, or subtle questions of the bending
of surfaces in a neighbourhood of an isolated zero of the curvature. For these
questions see Part I1I of the present book.
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Chapter 1
The Geometry of Two-Dimensional Manifolds
and Surfaces in E”

§ 1. Statement of the Problem

As the title itself emphasizes, in our article we consider only questions in
the theory of surfaces in E”, although many of the results recalled carry over
automatically to surfaces in spaces of constant curvature, and sometimes in
Riemannian manifolds. Of course, there are aspects that are specific for such
spaces; we shall not dwell on them, see Pogorelov (1969), Milka (1980), for
example.

1.1. Classes of Metrics and Classes of Surfaces. Geometric Groups and Geo-
metric Properties. It is well known that every (for simplicity, sufficiently smooth)
surface in E", considered from the viewpoint of its intrinsic metric, uniquely
determines a Riemannian manifold. On the other hand, an abstractly defined
Riemannian manifold can always be isometrically immersed in some E", but
such an immersion is not unique, and generally speaking the properties of the
Riemannian metric do not have an appreciable influence on the geometry of the
immersed surface. In the natural problem of the connection between properties
of a surface and properties of its intrinsic metric we shall be mainly interested in
the following two aspects.

Firstly, we have the question of which of the intrinsic properties of a surface
can be guaranteed by some completely determined extrinsic geometrical prop-
erties of it. (Of course, the answer to this question depends on what one under-
stands by a “geometric” property of a surface.) Secondly, there is the question of
the restriction of the class of admissible immersions to “regular™ ones, that is,
immersions for which the properties of the metric have an appreciable influence
on the extrinsic properties of the surface. The following definition of a geometric
property of a surface is basic for our later arguments.

A property of a surface is said to be geometric if it is preserved by transforma-
tions of E” that belong to some group G. We always assume that G contains the
group of similarities and is distinct from it. Such groups are called geometric. A
classification of geometric groups was obtained in G.S. Shefel’ (1984), G.S. Shefel’
(1985). Leaving a detailed discussion of this question to 2.2 of Ch. 4, we note
that it is meaningful to consider only the group of affine transformations?, the
pseudogroup of Mobius transformations (generated by similarities and inver-

!Since the dimension n of the ambient space is not fixed, it is a question, strictly speaking, of an
infinite choice of groups A, of affine transformations of E” for all n > 2 and similarly in the other
cases.
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sions when n > 2) and, to rather different ends, the group of all diffeomorphisms
of fixed smoothness.

The given definition of a geometric property makes more precise the first of
the questions posed above and suggests an answer to the second, Namely by the
“regularity” of an immersion we shall understand its G-stability.

Definition. A surface F in E" is called a G-stable immersion of the metric of
some class X if any transformation belonging to the group G takes F into a
surface whose intrinsic metric also belongs to the class X"

Here it is assumed that G is a geometric group (or pseudogroup) of transfor-
mations in E*. Since the identity transformation id belongs to G, it is obvious
that the intrinsic metric of the surface F itself belongs to ). In this definition the
class of metrics " is not necessarily exhausted by Riemannian metrics. Corre-
spondingly, by an immersion of a metric here we understand a C%smooth
(topological) immersion which is an isometry.

It is essential that the requirement of G-stability of a surface does not impose
any a priori restrictions on the dimension n of the ambient space. We note that
G-stable immersions of metrics of some class )" (not exhausting all admissible
metrics) always have a certain general geometric property. Transition from any
immersions to G-stable ones enables us to establish a dual connection between
extrinsic and intrinsic properties of surfaces.

The naturalness of the concept of G-stability is illustrated by the following
assertions, proved in the most general form in S.Z. Shefel’ (1969), S.Z. Shefel’
(1970), Sabitov and S.Z. Shefel’ (1976). The only affine-stable immersions in E*,
n = 3, for the class of two-dimensional Riemannian metrics of positive curvature
are locally convex surfaces in some E? < E" The class of affine stable immer-
sions for two-dimensional Riemannian metrics of negative curvature is by no
means exhausted by surfaces in E3, but all such immersions belong to the class
of so-called saddle surfaces, that is, surfaces that locally do not admit strictly
supporting hyperplanes; for the details see 3.1 of Ch. 3. Now suppose that G is
the group of difffomorphisms in E" of smoothness C®. Then the only G-stable
immersions for the class of Riemannian metrics of smoothness C"%, > 2,
0 < o < 1, are surfaces of the same smoothness.

The most attractive situation is that in which the class of metrics J", the
group G and the class of surfaces .# have the following relations.

1°. The class of surfaces .# coincides with the class of all G-stable immersions
of metrics of the corresponding class of metrics J".

2°. Every metric of the class o admits an immersion in the form of a surface
of class 4.

In this case the class of surfaces .# and the class of metrics " are said to be
G-connected.

Later we shall also use the concept of G-connectedness “in the small” and
G-connectedness “in the large”; for details see the next section.

The given definition admits gradations depending on how we understand the
terms surface, metric, and immersion of a metric. For example, affine-stable
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immersions in E" of a one-element class of plane metrics on E? contain all
cylinders (with rectifiable directrix) or consists only of smooth cylinders, depend-
ing on whether we understand by a surface any C°-immersion or only a smooth
one. We must take into account that the fact that a surface and all its images
under affine transformations have a smooth intrinsic metric does not imply,
generally speaking, that the surface itself is smooth2. Therefore in § 2 all metrics,
surfaces and immersions are a priori assumed to be smooth. In the examination
of non-regular surfaces and metrics, by isometric immersions we understand
topological {of smoothness C°) immersions that are isometries.

Otherwise it is a question of immersions that are stable with respect to the
group of diffeomorphisms; see § 5 of Ch. 4.

§2. Smooth Surfaces

2.1. Types of Points. We assume that F is a smooth surface, that is, an
immersion of smoothness C', I > 3, of a two-dimensional manifold M in E",
n 2 3. In differential geometry it is usual to describe surfaces by means of the
first and second fundamental forms. The first fundamental form specifies the
intrinsic (induced) metric of the surface — a metric where the distance between
points is equal to the greatest lower bound of lengths of curves joining these
points on the surface. The second fundamental form determines at each point of
the surface a family of osculating paraboloids. Let us explain this.

Let B be the second fundamental form of a surface F at a fixed point p. If F
is specified by a vector-valued function r(u!, u2), then

2
BX,Y)= Y X'Yi(ry)".
i,j=1
Here X* and Y/ are the coordinates of vectors X and Y tangent to F in the basis
(ry, r;), where r; = Or/du’, r; = 0*r/0u‘du’, and the index N denotes projection
into the normal (that is, orthogonal to T,F) subspace.

Every projection of the graph I” of the map X— B(X, X) onto the three-
dimensional space spanned by T,F and some normal v is a paraboloid (or
degenerates into a cylinder) and is called the osculating parabeloid. In the case
of degeneracy to a cylinder we shall call the latter a parabolic paraboloid by
analogy with elliptic and hyperbolic paraboloids.

We note that the subspace spanned by I' is said to osculate F at the point p.
Its dimension is at most five. For it is spanned in E" by the two-dimensional
subspace T, F and the vectors (r,,)", (r;,)", (r22)".

In the case of a surface in E* the family of osculating paraboloids consists of
one paraboloid. According to the type of osculating paraboloid the points of a

2 A remarkabie exception consists of smooth metrics of positive curvature under focally convex
immersions; see § 3 of Ch. 2.
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surface in E® are traditionally divided into elliptic, hyperbolic and parabolic (in
particular, flat points), which forms the only possible affine classification of
points of a surface in E* up to infinitesimals of the second order. The affine
classification of points coincides with the classification according to the sign of
the Gaussian curvature.

When n > 3 the affine classification of points of a smooth surface in E” is
also determined by the affine-invariant properties of the family of osculating
paraboloids at a point p and leads to eight different types of points (S.Z. Shefel’
(1985)). Without giving the classification itself here, we note that for two of these
types the Gaussian curvature? of the surface at p is zero. Points of these two
types are called parabolic. For another type of point the Gaussian curvature is
positive (elliptic point). For three other types of point the Gaussian curvature is
negative (hyperbolic point), and in two cases the sign of the Gaussian curvature
is not determined by the type of point (such points are said to be movable). The
first two of these types — parabolic points — have a common property: among the
osculating paraboloids there are no elliptic or hyperbolic ones. One type — ellip-
tic point — is characterized by the fact that among the osculating paraboloids
there are elliptic but no hyperbolic or non-degenerate parabolic ones. Three
more types are characterized by the fact that there are hyperbolic paraboloids
but no elliptic ones (hyperbolic point). Finally, the two remaining types are
characterized by the fact that at a point there are elliptic, hyperbolic and para-
bolic paraboloids.

2.2. Classes of Surfaces. The classification of points enables us to distinguish
six classes of smooth surfaces. Surfaces of the first three classes M*, M~, M,
consist, respectively, of only elliptic, hyperbolic or parabolic points. Surfaces of
class M consist only of elliptic and parabolic points, and surfaces of class My
consist only of hyperbolic and parabolic points. Finally, the class M is formed
by all smooth surfaces.

Surfaces of the class M, are called normal surfaces of non-negative curvature,
and surfaces of the classes My and M~ are called saddle surfaces and strictly
saddle surfaces respectively.

Theorem 2.2.1 (S.Z. Shefel’ (1970)). The class M* in E" consists of locally
convex sufaces each lying in some E3 c E". A complete surface of class M" is a
complete convex surface (the boundary of a convex body in E*). Normal surfaces
of non-negative curvature (of class Mg ) are characterized by the fact that either
every point of such a surface has a neighbourhood in the form of a convex surface
- or through this point there passes a rectilinear generator with its ends on the
boundary of the surface, and the tangent plane along this rectilinear generator is
stationary. A complete surface of class Mg is either a convex surface in E* or a -
cylinder in E".

3By the Gaussian curvature K of a smooth surface in E" we always have in mind the Gaussian
(that is, sectional) curvature of its intrinsic metric. By the generalized Gauss theorem
K = B(X, X)B(Y,Y)— B(X, Y when [ X A Y] = X2Y2 - (X, Y)* =1
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Fig. 1

The class M, consists of developable surfaces. The complete surfaces of th1s
class are cylinders.

Saddle surfaces F (the class Mg ) can be characterized by the property that no
hyperplane cuts out from F a crust, that is, a region whose closure is compact
and does not go out to the boundary of F.

Fig. 1 shows the case when a surface of class Mg in a neighbourhood of a
point p is neither locally convex nor developable (ab is a rectlinear generator).
We should emphasize that, in contrast to the class M™*, surfaces of the class Mg,
like all the subsequent classes, can be essentially n-dimensional for any n > 3,
that is, they do not lie in any proper subspace of E".

Thus, the theory of convex surfaces is, by necessity, the theory of surfaces in
E3, while surfaces of all the remaining classes are naturally regarded as surfaces
in E"foralln = 3.

The reason for such an exceptional position of convex surfaces has a simple
algebraic nature. Let B be the second fundamental form of a surface F at some
point p. Consider a linear map L of the normal space to F at p into R® according
to the following rule: we fix a basis in 7,F and associate with each normal v
an ordered triple -of numbers (a, b, c), the coefficients of the quadratic form
B'(X, X) = {B(X, X), v), where { , ) is the scalar product. The type of oscu-
lating paraboloid corresponding to the normal v (and vectors parallel to it) is
determined by the sign of the discriminant ac — b2. In particular, every direction
for which the osculating paraboloid is elliptic is mapped inside the cone
ac — b* >0, Fig. 2. Therefore all osculating paraboloids can be elliptic or
degenerate only if ¢ = dim image L <1. Similarly at a hyperbolic point, where
there are no elliptic paraboloids, we certainly have ¢ = dim image L < 2.

If ¢ = 3 at all points, then the immersion (surface) is said to be free. Surfaces
consisting only of variable points form the closure of the set of free immersions
in the corresponding topology. In the class of saddle surfaces it is natural to
regard the situation of general position as that in which ¢ = 2 everywhere (the
osculating space is four-dimensional), and in the class of convex surfaces g = 1
(the osculating space is three-dimensional). For convex surfaces the condition
q = 1 (that is, g # 0) means that the Gaussian curvature does not vanish.
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Fig.2

2.3. Classes of Metrics. According to the sign of the Gaussian curvature it is
natural to distinguish the following classes of two-dimensional Riemannian
metrics: the classes K*, K™, K, of Riemannian metrics of positive, negative and
zero curvature, the classes K¢, Ko of metrics of non-negative and non-positive
curvature, and the class K of all Riemannian metrics. The classes of surfaces and
metrics marked with the same indices will be called corresponding.

2.4. G-Connectedness. Local properties of smooth surfaces and metrics usu-
ally reduce to conditions on the surface (or metric) at each point of it. As a rule,
these conditions describe the behaviour of the surface (metric) in a neighbour-
hood of a point up to the second order of smallness. Henceforth a geometric
property of a surface will be called local if it is a property of a point of the
surface, and its fulfilment at some point p of the surface F implies its fulfilment
at p for any other surface that coincides with F in a neighbourhood of p up to
infinitesimals of the second order.

For classes of surfaces and metrics distinguished on the basis of their local
properties we shall distinguish G-connectedness in the small and G-connectedness
in the large and correspondingly formulate two problems: in the small and in the
large.

The class of surfaces .# and the class of metrics X~ are said to be G-connected
in the small if 1) the class of surfaces .# coincides with the class of G-stable
immersions of metrics of )", 2) every metric of ) admits a local immersion
in the form of a surface of .#. The problem in the small consists in looking for
classes of surfaces and metrics that are G-connected in the small.

The class .# of complete surfaces and the class & of complete metrics are
said to be G-connected in the large if 1) the class of surfaces .# coincides with the
class of G-stable immersions of metrics of &, 2) every metric of J admits
an immersion (in the large) in the form of a surface of #. The problem in
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the large consists in looking for classes of surfaces and metrics that are G-
connected in the large.

In contrast to the problem in the small, here even in those cases when local
properties are fundamental for the distinction of classes, we need to impose a
priori conditions of non-local character on classes of complete surfaces and
metrics that are G-connected in the large.

This is because the local conditions that distinguish classes of metrics and
surfaces that are G-connected in the small may lead to topological restrictions
that are different for surfaces and metrics. For example, on the projective plane
there are metrics of positive curvature, but none of them admits affine stable
immersions in E”. Moreover, in the case of classes of surfaces and metrics defined
by local conditions that are G-connected in the small there may exist non-local
obstructions for G-stable isometric immersions that have not only topological
but also mixed topological-metric character. Thus, on a sphere with three punc-
tures there are complete Riemannian metrics of non-positive curvature that are
immersible in E* and non-immersible as a saddle surface in any E"; see 1.4 of
Ch. 3.

In the case of complete metrics of positive curvature, and correspondingly
complete convex surfaces, the only (purely topological) obstruction is non-
connectedness. The matter is simple in the case of zero curvature. However,
finding all obstructions to immersibility of complete metrics of non-positive
(negative) curvature in the form of complete saddle (strictly saddle) surfaces in
at least one E” is a difficult problem. (The case of simply-connected surfaces is
simpler; for them it may be that all obstructions are trivial; see 1.3 of Ch. 3 and
43 0of Ch. 4))

2.5. Results and Conjectures. In this chapter a fundamental question is that
of the correspondence of surfaces and metrics in the case of smooth surfaces*
and for the affine transformation group, as in the general case, it consists of the
problem in the small and the problem in the large. The problem in the small for
the classes K*, K™, K, K has been solved completely; we have the following
two theorems

Theorem 2.5.1. The classes M*, M~, My, M of smooth surfaces and the
corresponding classes of metrics are pairwise affine connected in the small.

Theorem 2.5.2. If we restrict ourselves to those classes of smooth surfaces, each
of which is defined by a local geometric property, then there are no pairs that are
affine connected in the small other than those listed in Theorem 2.5.1 and possibly
the pairs Ky, Mg .

Theorem 2.5.1 combines the following assertions.
1°. Each of the classes of surfaces mentioned above is affine-invariant.

4 We recall that a smooth surface is always understood to be an immersion of class C', ! > 3. Special
cases, such as C®-smoothness (topological immersion) or C"*-smoothness, will be treated specially.
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2°. The intrinsic metric of a surface of any of these classes belongs to the
corresponding class of metrics.

3°. An affine-stable immersion in E" of a metric of any class belongs to the
corresponding class of surfaces.
 4°, Every metric of any of the classes admits a local immersion in the form of
a surface of the corresponding class in E",

Assertions 1°-3° hold for all six classes. The first of them is obvious. The
second follows from the many-dimensional generalization of Gauss’s theorem.
The third assertion is proved in S.Z. Shefel’ (1970). The fourth assertion has been
proved (see Pogorelov (1969), Poznyak and Shikin (1974)) only for the classes
listed in the theorem.

Let us proceed to complete metrics and surfaces.

Theorem 2.5.3. The classes M*, My, M of smooth complete simply-connected
surfaces and the corresponding classes of Riemannian metrics are affine connected
in the large®.

Like Theorem 2.5.1, this theorem combines four assertions. The first three of
them are the same as in Theorem 2.5.1, and are therefore proved. The fourth
assertion is as follows: every complete simply-connected Riemannian manifold
of any of the classes K*, K, K admits an immersion in the form of a (complete)
surface of the corresponding class. In the case of K,, this is obvious. Also, every
complete Riemannian metric of positive curvature, defined on a sphere or plane,
admits an immersion in E3 in the form of a smooth complete convex surface.
This is the solution of Weyl’s famous problem and its analogue for non-compact
surfaces; for details see Ch. 2. Therefore in the case of the classes K* and K,
Theorem 2.5.3 is true. It is also true for the class K (even without the requirement
of simply-connectedness) by a general theorem of Nash on isometric immersions
(Nash (1956)).

Let us state the proposition that the classes K~ and M~ of smooth simply-
connected surfaces and metrics are affine-connected in the large. This proposi-
tion combines four parts, of which the first three are the same as in Theorems
2.5.1 and 2.5.3, and are automatically true. The fourth part can be stated as
follows.

Conjecture A%, A complete simply-connected Riemannian metric of negative
curvature admits an isometric immersion in some E" in the form of a saddle surface.

Together with Theorem 2.5.3, Conjecture A, when it is true, can be regarded
as a generalization of Weyl’s problem. In any case all the results about non-
immersibility, in the first place Hilbert’s classical theorem and the well-known

% Here and later a tilde over a letter implies the completeness of the metric or surface.

$This conjecture was made in S.Z. Shefel’ (1978), S.Z. Shefel’ (1979), but with superfluous generality,
without the assumption of simply-connectedness; as we mentioned above, such a generalized conjec-
ture is false.
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more general theorem of Efimov (see §1.1 of Ch. 3), do not contradict our
conjecture, since here the class of immersions is restricted not by the dimension
of the space but by a geometric property, the saddle form.

The class K* of metrics and the corresponding class of surfaces do not form
an affine connected pair. It is true that a complete simply-connected Riemannian
manifold of non-negative curvature admits an immersion in E3 in the form of a
convex surface, but the smoothness of this surface may turn out to be substan-
tially lower than the smoothness of the metric at the zeros of the curvature; see
the example in 1.1 of Ch. 2. Such a lowering of the smoothness also takes place
when considered locally; it is easy to verify this on the basis of an example from
Pogorelov (1971). The authors do not have corresponding examples for the
classes K5 and K3 . We observe that in the case of analytic metrics and surfaces
the classes °K; and °K o of analytic metrics are affine connected in the small with
the corresponding classes of surfaces; see Poznyak (1973).

The fact that not all the classes of surfaces under consideration are affine
connected with the corresponding classes of metrics is probably stipulated by the
eclectic character of these classes: they are distinguished simultaneously by
geometric properties (convexity, saddle form, and so on) and the a priori require-
ment of smoothness. However, as we mentioned at the end of § 1, smoothness is
not an affine stable property in general; for details see §5 of Ch. 4. We can
therefore hope that in the case of not necessarily smooth surfaces distinguished
on the basis of just geometric properties there arise only classes that are affine
connected with the corresponding classes of metrics; see § 3 below.

2.6. The Conformal Group. Let us now dwell on the conformal group of
transformations. At each point of any smooth surface either 1) all the osculating
paraboloids are paraboloids of rotation or degenerate, or 2) by a conformal
transformation we can arrange that the Gaussian curvature of the surface at this
point takes any value. Hence it follows easily that apart from the class of all
surfaces and the class of all metrics the only ones that are conformally connected
in the small are the class of surfaces in E* locally congruent to a sphere or a
plane, and the class of metrics of constant curvature.

If a group of diffeomorphisms that preserves the subgroup of similarities is
not affine or conformal, then by the action of this group we can achieve any
value of the Gaussian curvature at some point of the surface (G.S. Shefel’ (1985)).
Therefore all other groups distinguish only the class of all metrics and the class
of all surfaces, and consideration of them from these positions is not meaningful.

The principle of correspondence between classes of surfaces and metrics
distinguishes classes of surfaces and metrics that play a central role in the theory
of surfaces and in Riemannian geometry, and this is one of the basic forms of
connection between intrinsic and extrinsic geometry. Only metrics of constant
negative curvature have not found their natural place in this scheme. It is
possible that a similar approach in the case of a pseudo-Euclidean space could
distinguish such metrics instead of metrics of constant positive curvature.
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§ 3. Convex, Saddle and Developable Surfaces with No
Smoothness Requirement

3.1, Classes of Non-Smooth Surfaces and Metrics. The classes of surfaces
considered above, apart from the general class M, admit synthetic definitions
(that is, purely geometric, not requiring any analytic apparatus). These defini-
tions, but without any a priori assumption of smoothness, distinguish the wider
classes Mg, My, My, M, #~ of generally speaking non-regular surfaces.
Complete surfaces of the ﬁrst three classes are complete convex surfaces com-
plete saddle surfaces, and cylinders.

These classes, apart from possibly non-simply-connected saddle surfaces,
have the compactness property: if compact surfaces F;, lying in E", of one of the
classes have the same topology and their boundaries form a compact family,
then we can pick out from them a convergent subsequence (it is a question of
Fréchet convergence), see Aleksandrov (1939), G.S. Shefel’ (1984). The classes
M, M5, My and the corresponding classes A, My, M, are closed” in the
sense that a convergent subsequence of surfaces of one class converges to a
surface of the same class. The classes .#* and .#~ are not closed and in this
connection they play a minor role.

What we have said here about surfaces can largely be repeated for metrics.
The classes of Riemannian metrics considered above admit a simple synthetic
description. The classes K, K , K are characterized by the fact that the excess
(that is, the difference between the sum of the angles and =) of any simply-
connected triangle of shortest curves is respectively non-negative, non-positive
and equal to zero. (For the classes K* and K~ we need to compare the excess
with the area of the triangle.) Let us now give up the fact that the metric is
Riemannian, that is, we shall consider a two-dimensional manifold with an
intrinsic metric (given directly by distances, and not by means of a quadratic
form). For precise definitions of a triangle, an angle, and other concepts in such
a space, we refer the reader to Aleksandrov and Zalgaller (1962). Then, depend-
ing on the sign of the excesses of triangles, we distinguish five classes of generally
speaking non-Riemannian metrics. These are the classes X", ¥, , o, of metrics
of non-negative, non-positive and zero curvature (the last class consists merely
of flat Riemannian metrics), and two more classes o+, "~ of metrics of strictly
positive and strictly negative curvature. The classes X5, o , X, are closed, but
X*, A"~ are not closed. Criteria for compactness of these classes are apparently
not known. \

3.2. Questions of Approximation. Another approach, which leads to non-
regular surfaces and metrics, is as follows. We complete the classes Mg , My, M,

7 Surfaces in a Euclidean space of fixed dimension form a metric space T with a Fréchet metric. This
space is complete. The fact that a class ¥ is closed means that the set T ¥ is closed in T. If we
regard T n ¥ as a metric space, it is a question of its completeness.



