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PREFACE

This book is intended to serve as a text for the course in analysis that is usually
taken by advanced undergraduates or by first-year students who study mathe-
matics.

The present edition covers essentially the same topics as the second one,
with some additions, a few minor omissions, and considerable rearrangement. I
hope that these changes will make the material more accessible and more attrac-
tive to the students who take such a course.

Experience has convinced me that it is pedagogically unsound (though
logically correct) to start off with the construction of the real numbers from the
rational ones. At the beginning, most students simply fail to appreciate the need
for doing this. Accordingly, the real number system is introduced as an ordered
field with the least-upper-bound property, and a few interesting applications of
this property are quickly made. However, Dedekind’s construction is not omit-
ted. It is now in an Appendix to Chapter i, where it may be studied and enjoyed
whenever the time seems ripe.

The material on functions of several variables is almost completely re-
written, with many details filled in, and with more examples and more motiva-
tion. The proof of the inverse function theorem—the key item in Chapter 9—is
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simplified by means of the fixed point theorem about contraction mappings.
Differential forms are discussed in much greater detail. Several applications of
Stokes’ theorem are included.

As regards other changes, the chapter on the Riemann-Stieltjes integral
has been trimmed a bit, a short do-it-yourself section on the gamma function
has been added to Chapter 8; and there is a large number of new exercises, most
of them with fairly detailed hints.

I have also included several references to articles appearing in the American
Mathematical Monthly and in Mathematics Magazine, in the hope that students
will develop the habit of looking into the journal literature. Most of these
references were kindly supplied by R. B. Burckel.

Over the years, many people, students as well as teachers, have sent me
corrections, criticisms, and other comments concerning the previous editions
of this book. I have appreciated these, and I take this opportunity to express
my sincere thanks to all who have written me.

WALTER RUDIN



Chapter 1

Chapter 2

Preface

The Real and Complex Number Systems

Introduction

Ordered Sets

Fields

The Real Field

The Extended Real Number System
The Complex Field

Euclidean Spaces

Appendix

Exercises

Basic Topology

Finite, Countable, and Uncountable Sets
Metric Spaces

Compact Sets

Perfect Sets

CONTENTS



iv CONTENTS

Chapter 3

Chapter 4

Chapter 5

Connected Sets
Exercises

Numerical Sequences and Series

Convergent Sequences
Subsequences

Cauchy Sequences

Upper and Lower Limits
Some Special Sequences
Series

Series of Nonnegative Terms
The Number e

The Root and Ratio Tests
Power Series

Summation by Parts
Absolute Convergence
Addition and Multiplication of Series
Rearrangements

Exercises

Continuity

Limits of Functions

Continuous Functions

Continuity and Compactness
Continuity and Connectedness
Discontinuities

Monotonic Functions

Infinite Limits and Limits at Infinity
Exercises

Differentiation

The Derivative of a Real Function
Mean Value Theorems

The Continuity of Derivatives
L’Hospital’s Rule

Derivatives of Higher Order
Taylor’s Theorem

Differentiation of Vector-valued Functions

Exercises

42
43

47

47
51
52
55
57
58
61
63
65
69
70
71
72
75
78

83

83
85
89
93
94
95
97
98

103

103
107
108
109
110
110

111
114



Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

The Riemann-Stieltjes Integral

Definition and Existence of the Integral .
Properties of the Integral

Integration and Differentiation
Integration of Vector-valued Functions
Rectifiable Curves

Exercises

Sequences and Series of Functions,

Discussion of Main Problem

Uniform Convergence

Uniform Convergence and Continuity
Uniform Convergence and Integration
Uniform Convergence and Differentiation
Equicontinuous Families of Functions
The Stone-Weierstrass Theorem

Exercises

Some Special Functions

Power Series

The Exponential and Logarithmic Functions

The Trigonometric Functions.

The Algebraic Completeness of the Complex Field
Fourier Series

The Gamma Function

Exercises

Functions of Several Variables

Linear Transformations
Differentiation

The Contraction Principle

The Inverse Function Theorem
The Implicit Function Theorem
The Rank Theorem
Determinants

Derivatives of Higher Order
Differentiation of Integrals
Exercises

Integration of Differential Forms

Integration

CONTENTS v

120

120
128
133
135
136
138

143

143
147
149
151
152
154
159
165

172

172
178
182
184
185
192
196

204

204
211
220
221
223
228
231
235
236
239

245
245



vi CONTENTS

Chapter 11

Primitive Mappings

Partitions of Unity

Change of Variables
Differential Forms

Simplexes and Chains

Stokes’ Theorem

Closed Forms and Exact Forms
Vector Analysis

Exercises

The Lebesgue Theory

Set Functions

Construction of the Lebesgue Meéasure
Measure Spaces

Measurable Functions

Simple Functions

Integration

Comparison with the Riemann Integral
Integration of Complex Functions
Functions of Class .#2

Exercises

Bibliography
List of Special Symbols
Index

248
251
252
253
266
273
275
280
288

300
302
310
310
313
314
322
325
325
332

33s
337
339



1

THE REAL AND COMPLEX NUMBER SYSTEMS

INTRODUCTION

A satisfactory discussion of the main concepts of analysis (such as convergence,
continuity, differentiation, and integration) must be based on an accurately
defined number concept. We shall not, however, enter into any discussion of
the axioms that govern the arithmetic of the integers, but assume familiarity
with the rational numbers (i.e., the numbers of the form m/n, where m and n
are integers and n # 0).

The rational number system is inadequate for many purposes, both as a
field and as an ordered set. (These terms will be defined in Secs. 1.6 and 1.12.)
For instance, there is no rational p such that p? =2. (We shall prove this
presently.) This leads to the introduction of so-called ‘“‘irrational numbers”
which are often written as infinite decimal expansions and are considered to be
“approximated” by the corresponding finite decimals. Thus the sequence

1,1.4,141,1.414,14142, ...

“tends to \/ 2. But unless the irrational number \/ 2 has been clearly defined,
the question must arise: Just what is it that this sequence “‘tends to”?
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This sort of question can be answered as soon as the so-called “‘real
number system’ is constructed.

1.1 Example We now show that the equation
m pP=2

is not satisfied by any rational p. If there were such a p, we could write p = m/n
where m and n are integers that are not both even. Let us assume this is done.
Then (1) implies

@ m? = 2n?,

This shows that m? is even. Hence m is even (if m were odd, m? would be odd),
and so m? is divisible by 4. It follows that the right side of (2) is divisible by 4,
so that n? is even, which implies that # is even.

The assumption that (1) holds thus leads to the conclusion that both m
and n are even, contrary to our choice of m and n. Hence (1) is impossible for
rational p.

We now examine this situation a little more closely. Let 4 be the set of
all positive rationals p such that p?* < 2 and let B consist of all positive rationals
p such that p? > 2. We shall show that A contains no largest number and B con-
tains no smallest.

More explicitly, for every p in A we can find a rational ¢ in 4 such that
P < g, and for every p in B we can find a rational ¢ in B such that ¢ < p.

To do this, we associate with each rational p > 0 the number

pP—-2 2p+2
3 — —— = -
@ =P~ 2 " +2
Then }
2_2)
4 2_,_Ap _
@ 1 (r+2)y7°

If p is in A then p* —2 <0, (3) shows that ¢ > p, and (4) shows that
q*> <2. Thusgis in 4.

If p is in B then p* — 2 > 0, (3) shows that 0 < g < p, and (4) shows that
q* > 2. Thus qisin B.

1.2 Remark The purpose of the above discussion has been to show that the
rational number system has certain gaps, in spite of the fact that between any
two rationals there is another: If r < s then r < (r + 5)/2 < 5. The real number

system fills these gaps. This is the principal reason for the fundamental role
which it plays in analysis.
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In order to elucidate its structure, as well as that of the complex numbers,
we start with a brief discussion of the general concepts of ordered set and field.

Here is some of the standard set-theoretic terminology that will be used
throughout this book.

1.3 Definitions If A is any set (whose elements may be numbers or any other
objects), we write x € 4 to indicate that x is a member (or an element) of 4.

If x is not a member of A, we write: x ¢ A.

The set which contains no element will be called the empty set. If a set has
at least one element, it is called nonempty.

If A and B are sets, and if every element of 4 is an element of B, we say
that A4 is a subset of B, and write A < B, or B o A. If, in addition, there is an
element of B which is not in A4, then A is said to be a proper subset of B. Note
that A < A for every set A.

If A< Band B c A, we write A = B. Otherwise A # B.

1.4 Definition Throughout Chap. 1, the set of all rational numbers will be
denoted by Q.

ORDERED SETS

1.5 Definition Let S be aset. An order on Sis a relation, denoted by <, with
the following two properties:

(i) If xe S and y € S then one and only one of the statements

x<y, x=y, y<x
is true.

(ii) Ifx,y,zeS,ifx<yandy<z thenx <z

The statement *““x < y* may be read as “‘x is less than y’” or *‘x is smaller
than y” or ““x precedes y”.

It is often convenient to write y > x in place of x < y.

The notation x < y indicates that x < y or x = y, without specifying which
of these two is to hold. In other words, x < y is the negation of x > y.

1.6 Definition An ordered set is a set S in which an order is defined.
For example, Q is an ordered set if r < s is defined to mean that s — r is a
positive rational number. '

1.7 Definition Suppose § is an ordered set, and E < S. If there exists a
B € S such that x < § for every x € E, we say that E is bounded above, and call
B an upper bound of E,

Lower bounds are defined in the same way (with > in place of <).
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1.8 Definition Suppose S is an ordered set, £ = S, and E is bounded above.
Suppose there exists an « € S with the following properties:

(i) «is an upper bound of E.
(ii) If » <a then y is not an upper bound of E

Then o is called the least upper bound of E [that there is at most one such
a is clear from (ii)] or the supremum of E, and we write

o = sup E.

The greatest lower bound, or infimum, of a set E which is bounded below
is defined in the same manner: The statement

oa=infE

means that « is a lower bound of E and that no f§ with § > « is a lower bound
of E.

1.9 Examples

(@) Consider the sets 4 and B of Example 1.1 as subsets of the ordered
set Q. The set 4 is bounded above. In fact, the upper bounds of 4 are
exactly the members of B. Since B contains no smallest member, 4 has
no least upper bound in Q.

Similarly, B is bounded below: The set of all lower bounds of B
consists of 4 and of all r € Q with r £ 0. Since 4 has no lasgest member,
B has no greatest lower bound in Q.

(b)) If & = sup E exists, then « may or may not be a member of E. For
instance, let E, be the set of all r € Q with r <0. Let E, be the set of all
re Q with r < 0. Then

sup E; =sup E, =0,

and 0¢ E;, 0 € E,.
(¢) Let E consist of all numbers 1/n, where n=1, 2, 3,.... Then
sup E = 1, which is in E, and inf E = 0, which is not in E.

1.10 Definition An ordered set Sis said to have the least-upper-bound property
if the following is true:
If Ec S, Eis not empty, and £ is bounded above, then sup £ exists in S.
Example 1.9(a) shows that Q does not have the least-upper-bound property.
We shall now show that there is a close relation between greatest lower
bounds and least upper bounds, and that every ordered set with the least-upper-
bound property also has the greatest-lower-bound property.
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1.11 Theorem Suppose S is an ordered set with the least-upper-bound property,
Bc S, B is not empty, and B is bounded below. Let L be the set of all lower
bounds of B. Then

oo =sup L

exists in S, and o. = inf B.

In particular, inf B exists in S.

Proof Since B is bounded below, L is not empty. Since L consists of
exactly those y € S which satisfy the inequality y < x for every x € B, we
see that every x € B is an upper bound of L. Thus L is bounded above.
Our hypothesis about S implies therefore that L has a supremum in S;
call it a.

If y < a then (see Definition 1.8) y is not an upper bound of L,
hence y ¢ B. It follows that a < x for every x € B. Thus a € L.

If « < B then B ¢ L, since « is an upper bound of L.

We have shown that ae L but ¢ L if > a. In other words, o
is a lower bound of B, but § is not if 8 > a. This means that a = inf B.

FIELDS

1.12 Definition A field is a set F with two operations, called addition and
multiplication, which satisfy the following so-called ‘““field axioms™ (A), (M),
and (D):

(A)

™)

Axioms for addition

(A1) If x € F and y € F, then their sum x + y is in F.

(A2) Addition is commutative: x + y=y + x forall x, ye F.

(A3) Addition is associative: (x + y) + z=x+ (y + z)forall x, y, ze F.
(A4) F contains an element 0 such that 0 + x = x for every x e F.

(A5) To every xeF corresponds an element —xe F such that

x+(—x)=0.

Axioms for multiplication

(M1) If xe Fand y € F, then their product xy is in F.

(M2) Multiplication is commutative: xy = yx for all x, ye F.

(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z€ F.
(M4) F contains an element 1 0 such that 1x = x for every x e F.
(M5) If xe F and x # 0 then there exists an element 1/x € F such that

x-(1/x)=1.
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(D) The distributive law

x(y +2)=xy + xz

holds for all x, y, ze F.

113

114

Remarks

(a) One usually writes (in any field)
x—y,g,x+y+z,xyz,x2,x3,2x, 3x,...
in place of
x+(—y),x-(§),(x+y)+z, xy)z, xx, xxx, x + x, x +x+ X%, ....

(b) The field axioms clearly hold in Q, the set of all rational numbers, if
addition and multiplication have their customary meaning. Thus Q is a
field.

(¢) Although it is not our purpose to study fields (or any other algebraic
structures) in detail, it is worthwhile to prove that some familiar properties
of Q are consequences of the field axioms; once we do this, we will not
need to do it again for the real numbers and for the complex numbers.

Propesition The axioms for addition imply the following statements.

(@ Ifx+y=x+ztheny=rz:.
b)) Ifx+y=xtheny=0.
© Ifx+y=0theny= —x.
@ —-(-x)=x

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness

of the element whose existence is assumed in (A4), and that (c¢) does the same
for (AS).

Proof If x + y = x + z, the axioms (A) give

y=04+y=(-x+x)+y=—x+(x+)y)
=—x+x+2)=(-x+x)+2z=0+z=2z

This proves (a). Take z =0 in (a) to obtain (b). Take z= —x in (a) to
obtain (c).
Since ~x + x =0, (¢) (with —x in place of x) gives (d).
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1.15 Proposition The axioms for multiplication imply the following statements.

(@) If x#0and xy=xztheny =z
b)) Ifx#0andxy=xtheny=1.

(¢ Ifx#0andxy=1theny=1/x.
d) Ifx #0 then 1/(1/x) = x.

The proof is so similar to that of Proposition 1.14 that we omit it.

1.16 Proposition The field axioms imply the following statements, for any x, y,
zeF.

(@) 0x=0.
) Ifx#0andy#0 then xy #0.
© (=x)p=—0(p)=x(~y).
@ (=xX=y)=xy.
Proof Ox + Ox = (0 + 0)x = Ox. Hence 1.14(b) implies that Ox =0, and
(a) holds.
Next, assume x # 0, y # 0, but xy = 0. Then (a) gives

()

a contradiction. Thus () holds.
The first equality in (c) comes from

(=x)y+xy=(-x+x)y=0y=0,

combined with 1.14(c); the other half of (c) is proved in the same way.
Finally,

(=0)(=») = === —[-(xN] = xp
by (c¢) and 1.14(d).

1.17 Definition An ordered field is a field F which is also an ordered set, such
that

(i) x+y<x+zifx,y,zeFandy <z,
(i) xy>0ifxeF,yeF,x>0,andy>0.

If x > 0, we call x positive; if x <0, x is negative.

For example, Q is an ordered field.

All the familiar rules for working with inequalities apply in every ordered
field: Muitiplication by positive [negative] quantities preserves [reverses] in-
equalities, no square is negative, etc. The following proposition lists some of
these.
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1.18 Proposition The following statements are true in every ordered field.

(@) If x >0 then —x <0, and vice versa.

(b)) Ifx>0andy <z then xy <xz.

(© Ifx<Oandy <z then xy > xz.

(d) Ifx #0 then x* > 0. In particular, 1 > 0.
(&) If0<x<ythen0<lfy<l1/x.

Proof

(@ Ifx>0then0=—x+x> —x+0, sothat —x <0. If x <0 then
0= —x+x< —x+0,sothat —x > 0. This proves (a).

(b) Since z>y, we have z—y>y —y=0, hence x(z—y)>0, and
therefore

xz2=x(z—y)+xy >0+ xy = xy.
(¢) By (a), (b), and Proposition 1.16(c),
—[xz =l =(-x)z-y)>0,

so that x(z — y) < 0, hence xz < xy.

(d) If x>0, part (ii) of Definition 1.17 gives x> > 0. If x <0, then
—x>0, hence (—x)*>0. But x*=(—x)?, by Proposition 1.16(d).
Since 1 =1%,1>0.

(&) Ify>0andv <0,thenyr <0. Buty-(1/y) =1>0. Hence l/y > 0.
Likewise, 1/x > 0. If we multiply both sides of the inequality x < y by
the positive quantity (1/x)(1/y), we obtain 1/y < 1/x.

THE REAL FIELD

We now state the existence theorem which is the core of this chapter.

1.19 Theorem There exists an ordered field R which has the least-upper-bound

property,
Moreover, R contains Q as a subfield.

The second statement means that Q = R and that the operations of
addition and multiplication in R, when applied to members of Q, coincide with
the usual operations on rational numbers; also, the positive rational numbers
are positive elements of R.

The members of R are called real numbers.

The proof of Theorem 1.19 is rather long and a bit tedious and is therefore
presented in an Appendix to Chap. 1. The proof actually constructs R from Q.



