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NOTES ON THE EXERCISES

THE EXERCISES in this set of books have been designed for self-study as well as
classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. This is sometimes unfortunate because readers like to know in
advance how long a problem ought to take —otherwise they may just skip over
all the problems. A classic example of such a situation is the book Dynamic
Programming by Richard Bellman; this is an important, pioneering work in
which a group of problems is collected together at the end of some chapters
under the heading “Exercises and Research Problems,” with extremely trivial
questions appearing in the midst of deep, unsolved problems. It is rumored that
someone once asked Dr. Bellman how to tell the exercises apart from the research
problems, and he replied, “If you can solve it, it is an exercise; otherwise it’s a
research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.”

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need aboit fifteen or twenty minutes to answer it
completely.
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30 A problem of moderate difficulty and/or complexity; this one may

involve more than two hours’ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a.rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 45 rating in later editions
of the book, and in the errata posted on the Internet.

The remainder of the rating number divided by 5 indicates the amount of
detailed work required, Thus, an exercise rated 24 may take longer to solve than
an exercise that is rated 25, but the latter will require more creativity.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators. .

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “»”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to be
the most valuable have been singled out. (This is not meant to detract from the
other exercises!) Each reader should at least make an attempt to solve all of the
problems whose rating is 10 or less; and the arrows may help to indicate which
of the problems with a higher rating should be given priority.

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
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solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later editions of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes: 00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)

> Recommended 40 Moderately hard

M  Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem
EXERCISES

» 1. [00] What does the rating “M20” mean?
2. [10] Of what value can the exercises in a textbook be to the reader?

3. [HM45] Prove that when n is an integer, n > 2, the equation ™ +y™ = z™ has
no solution in positive integers z,y, z.

Two hours’ daily exercise ... will be enough
to keep a hack fit for his work.

— M. H. MAHON, The Handy Horse Book (1865)
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CHAPTER FIVE

SORTING

There is nothing more difficult to take in hand,

more perilous to conduct, or more uncertain in its success,
than to take the lead in the introduction of

a new order of things.

— NICCOLO MACHIAVELLI, The Prince (1513)

“But you can’t look up all those license

numebers in time,” Drake objected.

“We don't have to, Paul. We merely arrange a list
and look for duplications.”

— PERRY MASON, in The Case of the Angry Mourner (1951)

“Treesort” Computer— With this new ‘computer-approach’
to nature study you can quickly identify over 260

different trees of U.S,, Alaska, and Canada,

even palms, desert trees, and other exotics.

To sort, you simply insert the needle.

— EDMUND SCIENTIFIC COMPANY, Catalog (1964)

IN THIS CHAPTER we shall study a topic that arises frequently in programming:
the rearrangement of items into ascending or descending order. Imagine how
hard it would be to use a dictionary if its words were not alphabetized! We
will see that, in a similar way, the order in which items are stored in computer
memory often has a profound influence on the speed and simplicity of algorithms
that manipulate those items.

Although dictionaries of the English language define “sorting” as the process
of separating or arranging things according to class or kind, computer program-
mers traditionally use the word in the much more special sense of marshaling
things into ascending or descending order. The process should perhaps be called
ordering, not sorting; but anyone who tries to call it “ordering” is soon led
into confusion because of the many different meanings attached to that word.
Consider the following sentence, for example: “Since only two of our tape drives
were in working order, I was ordered to order more tape units in short order,
in order to order the data several orders of magnitude faster.” Mathematical
terminology abounds with still more senses of order (the order of a group, the
order of a permutation, the order of a branch point, relations of order, etc., etc.).
Thus we find that the word “order” can lead to chaos.

Some people have suggested that “sequencing” would be the best name for
the process of sorting into order; but this word often seems to lack the right

1
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connotation, especially when equal elements are present, and it occasionally
conflicts with other terminology. It is quite true that “sorting” is itself an
overused word (“I was sort of out of sorts after sorting that sort of data”),
but it has become firmly established in computing parlance. Therefore we shall
use the word “sorting” chiefly in the strict sense of sorting into order, without
further apologies.

Some of the most important applications of sorting are:

a) Solving the “togetherness” problem, in which all items with the same identi-
fication are brought together. Suppose that we have 10000 items in arbitrary
order, many of which have equal values; and suppose that we want to rearrange
the data so that all items with equal values appear in consecutive positions. This
is essentially the problem of sorting in the older sense of the word; and it can be
solved easily by sorting the file in the new sense of the word, so that the values
are in ascending order, v; < vg < --+ < vigo00- The efficiency achievable in this
procedure explains why the original meaning of “sorting” has changed.

b) Matching items in two or more files. If several files have been sorted into the
same order, it is possible to find all of the matching entries in one sequential pass
through them, without backing up. This is the principle that Perry Mason used
to help solve a murder case (see the quotation at the beginning of this chapter).
We can usually process a list of information most quickly by traversing it in
sequence from beginning to end, instead of skipping around at random in the
list, unless the entire list is small enough to fit in a high-speed random-access
memory. Sorting makes it possible to use sequential accessing on large files, as
a feasible substitute for direct addressing.

c) Searching for information by key values. Sorting is also an aid to searching,
as we shall see in Chapter 6, hence it helps us make computer output more
suitable for human consumption. In fact, a listing that has been sorted into
alphabetic order often looks quite authoritative even when the associated nu-
merical information has been incorrectly computed.

Although sorting has traditionally been used mostly for business data pro-
cessing, it is actually a basic tool that every programmer should keep in mind
for use in a wide variety of situations. We have discussed its use for simplify-
ing algebraic formulas, in exercise 2.3.2-17. The exercises below illustrate the
diversity of typical applications.

One of the first large-scale software systems to demonstrate the versatility
of sorting was the LARC Scientific Compiler developed by J. Erdwinn, D. E.
Ferguson, and their associates at Computer Sciences Corporation in 1960. This
optimizing compiler for an extended FORTRAN language made heavy use of
sorting so that the various compilation algorithms were presented with relevant
parts of the source program in a convenient sequence. The first pass was a
lexical scan that divided the FORTRAN source code into individual tokens, each
representing an identifier or a constant or an operator, etc. Each token was
assigned several sequence numbers; when sorted on the name and an appropriate
sequence number, all the uses of a given identifier were brought together. The
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“defining entries” by which a user would specify whether an identifier stood for a
function name, a parameter, or a dimensioned variable were given low sequence
numbers, so that they would appear first among the tokens having a given
identifier; this made it easy to check for conflicting usage and to allocate storage
with respect to EQUIVALENCE declarations. The information thus gathered about
each identifier was now attached to each token; in this way no “symbol table”
of identifiers needed to be maintained in the high-speed memory. The updated
tokens were then sorted on another sequence number, which essentially brought
the source program back into its original order except that the numbering scheme
was cleverly designed to put arithmetic expressions into a more convenient
“Polish prefix” form. Sorting was also used in later phases of compilation, to
facilitate loop optimization, to merge error messages into the listing, etc. In
short, the compiler was designed so that virtually all the processing could be
done sequentially from files that were stored in an auxiliary drum memory, since
appropriate sequence numbers were attached to the data in such a way that it
could be sorted into various convenient arrangements.

Computer manufacturers of the 1960s estimated that more than 25 percent
of the running time on their computers was spent on sorting, when all their
customers were taken into account. In fact, there were many installations in
which the task of sorting was responsible for more than half of the computing
time. From these statistics we may conclude that either (i) there are many
important applications of sorting, or (ii) many people sort when they shouldn’t,
or (iii) inefficient sorting algorithms have been in common use. The real truth
probably involves all three of these possibilities, but in any event we can see that
sorting is worthy of serious study, as a practical matter.

Even if sorting were almost useless, there would be plenty of rewarding rea-
sons for studying it anyway! The ingenious algorithms that have been discovered
show that sorting is an extremely interesting topic to explore in its own right.
Many fascinating unsolved problems remain in this area, as well as quite a few
solved ones.

From a broader perspective we will find also that sorting algorithms make a
valuable case study of how to attack computer programming problems in general.
Many important principles of data structure manipulation will be illustrated in
this chapter. We will be examining the evolution of various sorting technigues
in an attempt to indicate how the ideas were discovered in the first place. By
extrapolating this case study we can learn a good deal about strategies that help
us design good algorithms for other computer problems. _

Sorting techniques also provide excellent illustrations of the general ideas
involved in the analysis of algorithms—the ideas used to determine performance
characteristics of algorithms so that an intelligent choice can be made between
competing methods. Readers who are mathematically inclined will find quite a
few instructive techniques in this chapter for estimating the speed of computer
algorithms and for solving complicated recurrence relations. On the other hand,
the material has been arranged so that readers without a mathematical bent can
safely skip over these calculations.
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Before going on, we ought to define our problem a little more clearly, and
introduce some terminology. We are given N items

Ry, Ry,..., RN

to be sorted; we shall call them records, and the entire collection of N records
will be called a file. Each record R; has a key, K, which governs the sorting
process. Additional data, besides the key, is usually also present; this extra
“satellite information” has no effect on sorting except that it must be carried
along as part of each record.

An ordering relation “<” is specified on the keys so that the following
conditions are satisfied for any key values q, b, c:

i) Exactly one of the possibilities a < b, a = b, b < a is true. (This is called
the law of trichotomy.)

ii) If @ < b and b < ¢, then a < c. (This is the familiar law of transitivity.)

Properties (i) and (ii) characterize the mathematical concept of linear ordering,
also called total ordering. Any relationship “<” satisfying these two properties
can be sorted by most of the methods to be mentioned in this chapter, although
some sorting techniques are designed to work only with numerical or alphabetic
keys that have the usual ordering.

The goal of sorting is to determine a permutation p(1) p(2)...p(N) of the
indices {1,2,..., N} that will put the keys into nondecreasing order:

Kpay < Kpz) < -+ < Kpwy- (2)

The sorting is called stable if we make the further requirement that records with
equal keys should retain their original relative order. In other words, stable
sorting has the additional property that

p(i) < p(j)  whenever K, = Kp;) and ¢ <. (2)

In some cases we will want the records to be physically rearranged in storage
so that their keys are in order. But in other cases it will be sufficient merely to
have an auxiliary table that specifies the permutation in some way, so that the
records can be accessed in order of their keys.

A few of the sorting methods in this chapter assume the existence of either
or both of the values “co” and “—o0”, which are defined to be greater than or
less than all keys, respectively:

—co< Kj <oo, for1<j<N. (3)

Such extreme values are occasionally used as artificial keys or as sentinel indica-
tors. The case of equality is excluded in (3); if equality can occur, the algorithms
can be modified so that they will still work, but usually at the expense of some
elegance and efficiency.

Sorting can be classified generally into internal sorting, in which the records
are kept entirely in the computer’s high-speed random-access memory, and ez-
ternal sorting, when more records are present than can be held comfortably in
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memory at once. Internal sorting allows more flexibility in the structuring and
accessing of the data, while external sorting shows us how to live with rather
stringent accessing constraints.

The time required to sort IV records, using a decent general-purpose sorting
algorithm, is roughly proportional to N log N; we make about log N “passes”
over the data. This is the minimum possible time, as we shall see in Section 5.3.1,
if the records are in random order and if sorting is done by pairwise comparisons
of keys. Thus if we double the number of records, it will take a little more
than twice as long to sort them, all other things being equal. (Actually, as N
approaches infinity, a better indication of the time needed to sort is N (log N)?,
if the keys are distinct, since the size of the keys must grow at least as fast as
log N; but for practical purposes, N never really approaches infinity.)

On the other hand, if the keys are known to be randomly distributed with
respect to some continuous numerical distribution, we will see that sorting can
be accomplished in O(V) steps on the average.

EXERCISES — First Set

1. [M20] Prove, from the laws of trichotomy and transitivity, that the permutation
p(1)p(2)...p(N) is uniquely determined when the sorting is assumed to be stable.

2. [21] Assume that each record R; in a certain file contains fwo keys, a “major key”
K; and a “minor key” k;, with a linear ordering < defined on each of the sets of keys.
Then we can define lexicographic order between pairs of keys (K, k) in the usual way:

(Ki,ki)<(Kj,kj) if K¢<K'j or if K,;ZK]' and k7;<kj.

Alice took this file and sorted it first on the major keys, obtaining n groups of
records with equal major keys in each group,

Kpay =+ = Kp(iy) < Kp(i 1) = -+ = Kplip) <+ < Kpli_s41) = 7+ = KpGen)s

where in = N. Then she sorted each of the n groups Ry(i;_,+1)s- -3 Rp(i;) on their
minor keys.

Bill took the same original file and sorted it first on the minor keys; then he took
the resulting file, and sorted it on the major keys.

Chris took the same original file and did a single sorting operation on it, using
lexicographic order on the major and minor keys (Kj,k;).

Did everyone obtain the same result?

3. [M25] Let < be a relation on Kjy, ..., K that satisfies the law of trichotomy but
not the transitive law. Prove that even without the transitive law it is possible to sort
the records in a stable manner, meeting conditions (1) and (2); in fact, there are at
least three arrangements that satisfy the conditions!

4. [21] Lexicographers don’t actually use strict lexicographic order in dictionaries,
because uppercase and lowercase letters must be interfiled. Thus they want an ordering
such as this:

a< A < aa < AA < AAA < Aachen < aah < --- < 22z < ZZZ.

Explain how to implement dictionary order.



