Masterminds of Programmlng
WmEXIEE o)

5 RRmIEIES IEENIE

Conversations with the Creators of Major Programming Languages

Federico Biancuzzi

iéﬁ’\"? H Rt T Shane Warden %

HEXIMEE zam

Masterminds of Programming

O’REILLY"

Beiying » Cambridge Farnham « Koln » Sebastopol - Taipei « Tokyo

O’Reilly Media, Inc. #A & d kK & &k BRAL E B

REAXFHEE

EHiEmR®mE (CIP) BiF

AR KITARER: B3/ (%) bbREEF (Biancuzz, F.),
(3%6) % (Warden, S.) 2 . —CH%E . —FR: KEK
2 B3, 2010.6

4 E3C: Masterminds of Programming

ISBN 978-7-5641-2262-1

X IV.®TP311.1

B RUA B 451 CIP B (2010) %5 089084 5

LA E A EZ VB A R%Rig
&=, 10-2010-163 2

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2010. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

% X & & & O'Reilly Media, Inc. # 8% 2009,

EXY R b & d i ¥ BRI 2010, S8 frRRH MR A4 B T 8] A AN B AR ITH &
—— O'Reilly Media, Inc. #5#4 T ,

BAETH , AFHEHT, KHOETR S SR RFUETH XE4,

RERMEE (FHR)

MR &4 AERFHRAE

W b FERMHMEE2S HR%H . 210096
H R A T i

i 4ik: http://press.seu.edu.cn

HF#l{E: press@seu.edu.cn

El Bil: i ENRIA R 2 5

F . 787 &Nk x 980K 16 FA&
Efl T 31 Efsk

¥ #. 607 Fx

R k. 201046 A& 11

En ;. 2010 4E 6 A 1 & EDA

¥ 5 ISBN 978-7-5641-2262-1

E % . 1~2000 fif

£ Hr: 68.00 ¢ ()

FAEAEFENERBEEE, FEESIREREHEA, Bi (5H). 025-83792328

Foreword

PROGRAMMING LANGUAGE DESIGN IS A FASCINATING TOPIC. There are so many programmers
who think they can design a programming language better than one they are currently
using; and there are so many researchers who believe they can design a programming lan-
guage better than any that are in current use. Their beliefs are often justified, but few of
their designs ever leave the designer’s bottom drawer. You will not find them represented
in this book.

Programming language design is a serious business. Small errors in a language design can
be conducive to large errors in an actual program written in the language, and even small
errors in programs can have large and extremely costly consequences. The vulnerabilities
of widely used software have repeatedly allowed attack by malware to cause billions of
dollars of damage to the world economy. The safety and security of programming lan-
guages is a recurrent theme of this book.

vii

wiil

Programming language design is an unpredictable adventure. Languages designed for uni-
versal application, even when supported and sponsored by vast organisations, end up
sometimes in just a niche market. In contrast, languages designed for limited or local use
can win a broad clientele, sometimes in environments and for applications that their
designers never dreamed of. This book concentrates on languages of the latter kind.

These successful languages share a significant characteristic: each of them is the brainchild
of a single person or a small team of like-minded enthusiasts. Their designers are master-
minds of programming; they have the experience, the vision, the energy, the persistence,
and the sheer genius to drive the language through its initjal implementation, through its
evolution in the light of experience, and through its standardisation by usage (de facto)
and by committee (de jure).

In this book the reader will meet this collection of masterminds in person. Each of them
has granted an extended interview, telling the story of his language and the factors that lie
behind its success. The combined role of good decisions and good luck is frankly acknowl-
edged. And finally, the publication of the actual words spoken in the interview gives an
insight into the personality and motivations of the designer, which is as fascinating as the
language design itself.

~Sir Tony Hoare

Sir Tony Hoare, winner of an ACM Turing Award and a Kyoto Award, has been a leader in research
into computing algorithms and programming languages for 50 years. His first academic paper, writ-
ten in 1969, explored the idea of proving the correctness of programs, and suggested that a goal of pro-
gramming language design was to make it easier to write correct programs. He is delighted 1o see the

idea spread gradually among programming language designers.

FOREWORD

Preface

WRITING SOFTWARE IS HARD— AT LEAST, WRITING SOFTWARE THAT STANDS UP UNDER TESTS, TIME,
and different environments is hard. Not only has the software engineering field struggled
to make writing software easier over the past five decades, but languages have been
designed to make it easier. But what makes it hard in the first place?

Most of the books and the papers that claim to address this problem talk about architec-
ture, requirements, and similar topics that focus on the sofiware. What if the hard part was
in the writing? To put it another way, what if we saw our jobs as programmers more in
terms of communication—language—and less in terms of engineering?

Children learn to talk in their first years of life, and we start teaching them how to read
and write when they are five or six years old. I don’t know any great writer who learned
to read and write as an adult. Do you know any great programmer who learned to pro-
gram late in life?

And if children can learn foreign languages much more easily than adults, what does this
tell us about learning to program—an activity involving a new language?

x

Imagine that you are studying a foreign language and you don't know the name of an
object. You can describe it with the words that you know, hoping someone will under-
stand what you mean. Isn’t this what we do every day with software? We describe the
object we have in our mind with a programming language, hoping the description will be
clear enough to the compiler or interpreter. If something doesn’t work, we bring up the
picture again in our mind and try to understand what we missed or misdescribed.

With these questions in mind, I chose to launch a series of investigations into why a pro-
gramming language is created, how it’s technically developed, how it’s taught and
learned, and how it evolves over time.

Shane and I had the great privilege to let 27 great designers guide us through our journey,
so that we have been able to collect their wisdom and experience for you.

In Masterminds of Programming, you will discover some of the thinking and steps needed to
build a successful language, what makes it popular, and how to approach the current

-problems that its programmers are facing. So if you want to learn more about successful

programming language design, this book surely can help you.

If you are looking for inspiring thoughts regarding software and programming languages,
you will need a highlighter, or maybe two, because I promise that you will find plenty of
them throughout these pages.

—~Federico Biancuzzi

Organization of the Material

The chapters in this book are ordered to provide a varied and provocative perspective as
you travel through it. Savor the interviews and return often.

Chapter 1, C++, interviews Bjarne Stroustrup.

Chapter 2, Python, interviews Guido van Rossum.

Chapter 3, APL, interviews Adin D. Falkoff.

Chapter 4, Forth, interviews Charles H. Moore.

Chapter 5, BASIC, interviews Thomas E. Kurtz.

Chapter 6, AWK, interviews Alfred Aho, Peter Weinberger, and Brian Kernighan.
Chapter 7, Lua, interviews Luiz Henrique de Figueiredo and Roberto Ierusalimschy.

Chapter 8, Haskell, interviews Simon Peyton Jones, Paul Hudak, Philip Wadler, and John
Hughes.

Chapter 9, ML, interviews Robin Milner.

Chapter 10, SQL, interviews Don Chamberlin.

PREFACE

Chapter 11, Objective-C, interviews Tom Love and Brad Cox.

Chapter 12, Java, interviews James Gosling.

Chapter 13, C#, interviews Anders Hejlsberg.

Chapter 14, UML, interviews Ivar Jacobson, James Rumbaugh, and Grady Booch.
Chapter 15, Per/, interviews Larry Wall.

Chapter 16, PostScript, interviews Charles Geschke and John Warnock.

Chapter 17, Eiffel, interviews Bertrand Meyer.

Contributors lists the biographies of all the contributors.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, filenames, and utilities.

Constant width
Indicates the contents of computer files and generally anything found in programs.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North .
Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/twww.oreilly.com/catalog/9780596515171
To comment or ask technical questions about this book, send email to;
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our website at:

http:/twww.oreilly.com

PREFACE

Safari' Books Online

os When you see a Safari® Books Online icon on the cover of your favorite
Safa r l technology book, that means the book is available online through the
BooksOnline ()'Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free
at http://my.safaribooksonline.com.

xii PREFACE

FOREWORD
PREFACE

C++

Bjarne Stroustrup
Design Decisions
Using the Landuage
OOP and Concurrency
Future
Teaching

PYTHON

Guido van Rossum
The Pythonic Way
The Good Programmer
Multiple Pythons
Expedients and Experience

APL

Adin H Falkoff
Paper and Pencil
Elementary Principles
Parallelism
Legacy

FORTH
Charles D. Moore
The Forth Language and Language Design
Hardware
Application Design

BASIC
Thomas E. Kurtz
The Goals Behind BASIC
Compiler Design
Language and Programming Practice
Language Design
Work Goals

CONTENTS

vii

13
16

19

20
27
32
37

43

44
47
53
56

59

60
67
71

79

80
86
90
91
97

iv CONTENTS

10

- AWK

Alfred Aho, Peter Weinberger, and Brian Kernighan

The Life of Algorithms
Language Design

Unix and Its Culture

The Role of Documentation
Computer Science

Breeding Little Languages
Designing a New Language
Legacy Cuiture
Transformative Technologies
Bits That Change the Universe
Theory and Practice

Waiting for a Breakthrough
Programming by Example

LUA
Luiz Henrique de Figueiredo and Roberto lerusalimschy
The Power of Scripting
Experience
Languagde Design

HASKELL
Simon Peyton Jones, Paul Hudak, Philip Wadler,
and John Hughes

A Functional Team

Trajectory of Functional Programming
The Haskell Language

Spreading {Functional) Education
Formalism and Evolution

ML

Robin Milner
The Soundness of Theorems
The Theory of Meaning
Beyond Informatics

sQL
Don Chamberlin

A Seminal Paper

The Language

Feedback and Evolution

XQuery and XML

101

102
104
106
111
11%
116
121
129
132
137
142
149
154

161

162
165
169

177

178
180
187
194
196

203

204
212
218

225

226
229
233
238

11

12

13

14

OBJECTIVE-C

Brad Cox and Tom Love
Engineering Objective-C
Growing a Language
Education and Training

Project Management and Legacy Software

Obijective-C and Other Languages
Components, Sand, and Bricks
Quality As an Economic Phenomenon
Education

JAVA

James Gosling
Power or Simplicity
A Matter of Taste
Concurrency
Designing a Landuage
Feedback Loop

C#
Anders Hejlsberg

Language and Design

Growing a Languagde

C#

The Future of Computer Science

UML

Juar Jacobson, James Rumbaugh, and Grady Booch

Learning and Teaching
The Role of the People
UML

Knowledge

Be Ready for Change
Using UML

Layers and Languages

A Bit of Reusability
Symmetric Relationships
UML

Language Design
Training Developers
Creativity, Refinement, and Patterns

241

242
244
249
251
258
263
269
272

12

278
281
285
287
291

295

286
302
306
311

317

318
323
328
331
334
339
343
348
352
356
358
364
366

CONTENTS v

vi CONTENTS

15

16

17

PERL
Larry Wall
The Language of Revolutions
Language
Community
Evolution and Revolution

POSTSCRIPT

Charles Geschke and John Warnock

Designed to Last
Research and Education
Interfaces to Longevity
Standard Wishes

EIFFEL
Bertrand Meyer

An Inspired Afternoon
Reusability and Genericity
Proofreading Languages
Managing Growth and Evolution

AFTERWORD
CONTRIBUTORS

INDEX

375

376
380
386
389

395

396
406
410
414

417

418
425
429
136

]

443

459

CHAPTER ONE

C++

C++occupies an interesting space among languages: it is built on the foundation of
C, incorporating object-orientation ideas from Simula; standardized by ISO; and
designed with the mantras “you don’t pay for what you don't use” and “support
user-defined and built-in types equally well.” Although popularized in the 80s
and 90s for 00 and GUI programming, one of its greatest contributions to software
is its pervasive generic programming techniques, exemplified in its Standard Tem-
plate Library. Newer languages such as Java and C# have attempted to replace C++,
but an upcoming revision of the C++ standard adds new and long-awaited fea-
tures. Bjarne Stroustrup is the creator of the language and still one of its strongest
advocates.

Design Decisions

Why did you choose to extend an existing language instead of creating a new one?

Bjarne Stroustrup: When I started—in 1979—my purpose was to help programmers
build systems. It still is. To provide genuine help in solving a problem, rather than being
just an academic exercise, a language must be complete for the application domain. That
is, a non-research language exists to solve a problem. The problems I was addressing
related to operating system design, networking, and simulation, I—and my colleagues—
needed a language that could express program organization as could be done in Simula
(that’s what people tend to call object-oriented programming), but also write efficient
low-level code, as could be done in C. No language that could do both existed in 1979, or
I'would have used it. I didn’t particularly want to design a new programming language; I
just wanted to help solve a few problems.

Given that, building on an existing language makes a lot of sense. From the base language,
you get a basic syntactic and semantic structure, you get useful libraries, and you become
part of a culture. Had I not built on C, I would have based C++ on some other language.
Why C? I had Dennis Ritchie, Brian Kernighan, and other Unix greats just down {or
across) the hall from me in Bell Labs’ Computer Science Research Center, so the question
may seem redundant. But it was a question I took seriously.

In particular, C’s type system was informal and weakly enforced (as Dennis Ritchie said,
“C is a strongly typed, weakly checked language”). The “weakly checked” part worried me
and causes problems for C++ programmers to this day. Also, C wasn't the widely used lan-
guage it is today. Basing C++ on C was an expression of faith in the model of computation
that underlies C (the “strongly typed” part) and an expression of trust in my colleagues.
The choice was made based on knowledge of most higher-level programming languages
used for systems programming at the time (both as a user and as an implementer). It is
worth remembering that this was a time when most work “close to the hardware” and
requiring serious performance was still done in assembler. Unix was a major breakthrough in
many ways, including its use of C for even the most demanding systems programming tasks.

So, I chose C’s basic model of the machine over better-checked type systems. What [really
wanted as the framework for programs was Simula’s classes, so I mapped those into the C
model of memory and computation. The result was something that was extremmely expres-
sive and flexible, yet ran at a speed that challenged assembler without a massive runtime
support system.

Why did you choose to support multiple paradigms?

Bjarne: Because a combination of programming styles often leads to the best code, where
“best” means code that most directly expresses the design, runs faster, is most maintain-
able, etc. When people challenge that statement, they usually do so by either defining their
favorite programming style to include every useful construct (e.g., “generic programming is
simply a form of 00O”) or excluding application areas (e.g., “everybody has a 1GHz, 1GB
machine”).

2 CHAPTER ONE

Java focuses solely on object-oriented programming. Does this make Java code more
complex in some cases where C++ can instead take advantage of generic programming?

Bjarne: Well, the Java designers—and probably the Java marketers even more so—
emphasized OO to the point where it became absurd. When Java first appeared, claiming
purity and simplicity, I predicted that if it succeeded Java would grow significantly in size
and complexity. It did.

For example, using casts to convert from Object when getting a value out of a container
(e.g., (Apple)c.get(i)) is an absurd consequence of not being able to state what type the
objects in the container is supposed have. It’s verbose and inefficient. Now Java has gener-
ics, so it’s just a bit slow. Other examples of increased language complexity (helping the
programmer) are enumerations, reflection, and inner classes.

The simple fact is that complexity will emerge somewhere, if not in the language defini-
tion, then in thousands of applications and libraries. Similarly, Java’s obsession with put-
ting every algorithm (operation) into a class leads to absurdities like classes with no data
consisting exclusively of static functions. There are reasons why math uses f(x} and f(x,y)
rather than x.f(), x.f(y), and (x,y).f()—the latter is an attempt to express the idea of a
“truly object-oriented method” of two arguments and to avoid the inherent asymmetry of
x.f(y).

C++ addresses many of the logical as well as the notational problems with object orienta-
tion through a combination of data abstraction and generic programming techniques. A
classical example is vector<T> where T can be any type that can be copied—including built-
in types, pointers to OO hierarchies, and user-defined types, such as strings and complex
numbers. This is all done without adding runtime overheads, placing restrictions on data
layouts, or having special rules for standard library components. Another example that
does not fit the classical single-dispatch hierarchy model of OO is an operation that
requires access to two classes, such as operator* (Matrix,Vector), which is not naturally a
“method” of either class.

One fundamental difference between C++ and Java is the way pointers are implemented.
in some ways, you could say that Java doesn’t have real pointers. What differences are
there between the two approaches?

Bjarne: Well, of course Java has pointers. In fact, just about everything in Java is implic-
itly a pointer. They just call them referernces. There are advantages to having pointers
implicit as well as disadvantages. Separately, there are advantages to having true local
objects (as in C++) as well as disadvantages.

C++'s choice to support stack-allocated local variables and true member variables of every
type gives nice uniform semantics, supports the notion of value semantics well, gives com-
pact layout and minimal access costs, and is the basis for C++'s support for general
resource management. That’s major, and Java’s pervasive and implicit use of pointers (aka
references) closes the door to all that.

C++

Consider the layout tradeoff: in C++ a vector<complex>(10) is represented as a handle to an
array of 10 complex numbers on the free store. In all, that’s 25 words: 3 words for the vec-
tor, plus 20 words for the complex numbers, plus a 2-word header for the array on the
free store (heap). The equivalent'in Java (for a user-defined container of objects of user-
defined types) would be 56 words: 1 for the reference to the container, plus 3 for the con-
tainer, plus 10 for the references to the objects, plus 20 for the objects, plus 24 for the free
store headers for the 12 independently allocated objects. Obviously, these numbers are
approximate because the free store (heap) overhead is implementation defined in both
languages. However, the conclusion is clear: by making references ubiquitous and implicit,
Java may have simplified the programming model and the garbage collector implementa-
tion, but it has increased the memory overhead dramatically—and increased the memory
access cost (requiring more indirect accesses) and allocation overheads proportionally.

What Java doesn’t have—and good for Java for that—is C and C++'s ability to misuse
pointers through pointer arithmetic. Well-written C++ doesn’t suffer from that problem
either: people use higher-level abstractions, such as iostreams, containers, and algorithms,
rather than fiddling with pointers. Essentially all arrays and most pointers belong deep in
implementations that most programmers don’t have to see. Unfortunately, there is also
lots of poorly written and unnecessarily low-level C++ around.

There is, however, an important place where pointers—and pointer manipulation—is a
boon: the direct and efficient expression of data structures. Java’s references are lacking
here; for example, you can’t express a swap operation in Java, Another example is simply
the use of pointers for low-level direct access to (real) memory; for every system, some
language has to do that, and often that language is C++.

The “dark side” of having pointers (and C-style arrays) is of course the potential for mis-
use: buffer overruns, pointers into deleted memory, uninitialized pointers, etc. However,
in well-written C++ that is not a major problem. You simply don‘t get those problems with
pointers and arrays used within abstractions (such as vector, string, map, etc.). Scoped
resource management takes care of most needs; smart pointers and specialized handles
can be used to deal with most of the rest. People whose experience is primarily C or old-
style C++ find this hard to believe, but scope-based resource management is an immensely
powerful tool and user-defined with suitable operations can address classical problems
with less code than the old insecure hacks. For example, this is the simplest form of the
classical buffer overrun and security problem:

char buf[MAX_BUF];
gets(buf); // Yuck!

Use a standard library string and the problem goes away:

string s;
cin >> s; // read whitespace separated characters

These are obviously trivial examples, but suitable “strings” and “containers” can be crafted
to meet essentially all needs, and the standard library provides a good set to start with.

% CHAPTER ONE

