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Algebra and geometry*
Z. X. Wan

Finite Groups. Early in 1938, while Hua taught at the Southwest Association
Associated University in Kunming, he conducted a seminar on finite groups; among
the topics studied were p-groups. In [46, 81], he introduced the concept of the rank
of a p-group. A p-group g of order p™ is said to be of rank «, if the maximum of the
orders of its elements is p” ™. Using this concept he proved that a pseudo-basis exists
in p-groups, i.e., if p 2 3 and n > 2a + 1, then every element of g can be expressed

uniquely as
G:ACSAZQAJ&Q_—II...A?‘I’ Ogagp’n—a_l, Ogtslgp—-l,

where A is of order p”~* and A? ' = 1. With the aid of pseudo-bases, and of a modified
form of the enumeration principle of P. Hall, he proved several “Anzahl” theorems.
For instance, if g is a group of order p™ and rank a(p 2 3, n > 2a+1), then (i)g
contains one and only one subgroup of order p™ and rank a(2a +1 < m € n);
(i) g contains p® cyclic subgroups of order p™ (o < m < n— a — 1); (iii) the number
of elements of order € p™ (& < m € n— ) in g is equal to p™*. The second and
third results improved theorems of G. A. Miller and A. A. Kulakoff respectively.
Skew Fields. Since Hamilton’s first example of a non-commutative division

the quaternion algebra— division algebras have received a great deal

algebra
of attention. By comparison, infinite dimensional division algebras—skew fields

were neglected; until, around 1950, with his perceptive direct algebraic method

Hua proved several remarkable theorems in this area.

First, in 1949, Hual®® proved that “every semi-automorphism of a skew field
is either an automorphism or an anti-automorphism” (by a semi-automorphism of
a skew field we mean a one-to-one mapping ¢ from the skew field into itself with
the properties (a + b)? = a° + b7, (aba)® = a”b%a’ and 1° = 1). This theorem

was referred to as the beautiful theorem of Hua by E. Artin in his book Geometric

* Reprinted from Loo-Keng Hua Selected Papers. New York: Springer-Verlag, 1983: 281-284.

The references in this article are those in this book.
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Algebra. From it Hual®®97 deduced also the fundamental theorem of l-dimensional
projective geometry over a skew field. In 1950/97] he extended his theorem to semi-
homomorphisms of rings without zero divisors.

Secondly, in 1949 L. K. Hual®! gave a straightforward proof that “every proper
normal subfield of a skew field is contained in its center”. This result appears in the
literature as the Cartan-Brauer-Hua theorem. Before the work of Hua and Richard
Brauer, Henri Cartan’s proof had used the complicated device of Galois extensions
over subfields. By contrast, Hua’s proof requires only the elementary identity: If
ab # ba, then

a= (b7~ (@-1"" (@~ 1)) (a e~ (a — 1) (a - 1))_1.

In 1950, Hual?! proved also that “if a skew field is not a field, then its multi-
plicative group is not meta-abelian”.

Classical Groups. FEarly in 1946, L. K. Hual™! published his first paper on
automorphisms of classical groups, in which he determined the automorphisms of
a real symplectic group. Subsequently, in 1948, hel83 determined the automorphisms
of a symplectic group over any field of characteristic not 2. The method of Hua for
determining the automorphisms of symplectic groups can be applied also to classical
groups of other types; but since Dieudonné published his results on the automorphisms
of classical groups in 1951, Hual'®! restricted himself to publishing only solutions, by
his own method, to a series of problems left open by Dieudonné. The first of these
was the determination of automorphisms of GL2(K), K being an arbitrary skew field
of characteristic # 2.

Besides GL2(K), Huall9! determined also the automorphisms of SLy(K) and
PSL4(K), where K is a skew field of characteristic not 2, and the automorphism of
OF (K, f), where K is a field of characteristic not 2 and f is a quadratic form of index
2. Afterwards, Hua and Z. X. Wan(!%%! determined the automorphisms of SLa(K)
and PSLy(K), where K is a skew field of characteristic # 0, the automorphisms of
SL4(K) and PSL4(K'), where K is a skew field of characteristic 2, and they proved
also the nonisomorphism of certain linear groups.

Hua’s work on the automorphisms of classical groups, shows mastery of the
techniques of matrix calculation. The procedure is to start with the low-dimensional
cases and to proceed to the higher-dimensional cases by induction, as in [85], for
SPa,(K).

About the structure of classical groups, Hua extended the usual unitary group to
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the case when the basic field is not necessarily commutative but has an involutive anti-
automorphism. He proved that the group TU,(K1S) generated by unitary transvec-
tions modulo its center is a simple group, if S has index > 1 and that TU,(KS) is
the commutator subgroup of U,(K18), if the index of § satisfies n > 2V > 4.

Hua and I. Reiner'0%196] 3lso determined the automorphisms of GL,(Z) and
DGL,(Z), which was the start of the work on the automorphisms of classical groups
over rings. They[®? also proved that GL,(Z) is generated by three elements, SL(Z)
by two elements, and Sp2,(Z) by four elements for n > 2. Formerly Poincaré* had
stated without proof that Sp2.(Z) is generated by elementary matrices of two simple
types, and later Brahana! had proved this by showing that every element of Spa, (Z)
is expressible as a product of matrices taken from some finite set of matrices.

Geometry of Matrices/67:76-78,93.99  Gtudy of this topic was initiated by Hua and
relates to Siegel’s work on fractional linear transformations. In it, the points of the
space are matrices of a certain kind, for instance, rectangular matrices, symmetric
matrices or skew-symmetric matrices of the same size. There is then a group of
motions in this space, and the problem is to characterize the group of motions by
as few geometric invariants as possible. First, he studied the geometry of matrices
of various types over the complex or real fields. Later, he extended his results to
the case when the basic field is not necessarily commutative and discovered that
the invariant“coherence” is alone sufficient to characterize the group of motions of
the space. Take his paper [99] as an example. He proved the fundamental theorem
of affine geometry of rectangular matrices: Let 1 < n < m. Then the one-to-one
mappings from the set of n x m matrices over a skew field K onto itself preserving
coherence (two matrices M and N are said to be coherent, if the rank of M—N is 1) is
necessarily of the form

Z,=PZ°Q + R, (1)

where P = P™ gnd Q = Q™) are invertible matrices, R is an n X m matriz, and @

is an automorphism of K; if n = m, then besides (1) we have also
Z,=PZ"Q+R,

where T is an anti-automorphism of K. From this theorem he deduced the fundamental

theorem of the projective geometry of rectangular matrices (the Grassmann space),

* Poincaré H. Rend Circ Mat Palermo, 1904, 18: 45-110.
+ Brahana R R. Ann of Math, 1923, 24 (2): 265-270.
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and he determined the Jordan isomorphism of total matrix rings over skew fields of
characteristic # 2 and the Lie isomorphism of total matrix rings over skew fields of
characteristic # 2, 3.

Arising from the geometry of matrices and the theory of functions of several
complex variables, Hua went on to study the classification problem of matrices; for
instance, the classification of complex symmetric and skew-symmetric matrices under

661 and of Hermi-

the unitary group, of a pair of Hermitian matrices under congruence
tian matrices under the orthogonal group(™® (editorial note: by “elementary divisors
of a characteristic matrix” is meant, in current usage, “Jordan blocks” in a Jordan

d

normal form, in the sense that (X — a)® is an elementary divisor of multiplicity m if

and only if the Jordan form has exactly m blocks of d x d matrices

a 1 0

Jala) =
1

(81

In [76], on p. 509 four lines from the bottom, read T' Q(T")~! = T for TQT) =T,
and on p. 512 line four, read H = KT for K = HTg).
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AR Ar,-- A A pr,o- s LERBCATHIAE.
HLET TR
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iﬁ‘ﬂ“ a1, ,024 %*ﬁggﬁ

« B3 1930, 15: 307-309.
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& a1ny + azng = 0, a1gns +aang = 0, N P = 5P R, Mk A no, ny
ZERF KRR, B2, B no,ng ZHAE, BHIEATVER no :ny i ng 2 ng @ ng Z1H,
WEEE LN L2 TR, s, BERTERXTENEL.

FHALEBMHZRE B, B ) AREETF (1D 8. RRRERH a1,
age, R ARZ 2 Z+HERX, FAEREN, o2 000K, HFTT:

(—) aijaz = Ay, asas = As,
azay + ajar = As, asa; + aza; = Ag;
(=) a1za17 = As, a14a18 = Ay,
a17a14 + a13a24 = Aj3, a18a13 + a14024 = Ajg;
(=) a1za1s5 + a1a3z = As, aj4a15 + arag = A,
a1a11 + G209 = Q18 — A14019, azai; + asaie = Ao,
asaig + ai3a1 = Ag, a1a10 + G288 = 017 — A13019;
(l9) a1as + aisaz = A1, azas + aizags = Aja,
a2a12 + a14a22 = A9 — a13a23, ajai2 + a1zaz1 = Ao — a14a20,
a1a6 + a14a21 = Aia, a206 + a14a93 = A1s.

WIRFTBMR a7, a24 WH (—), (Z) ] a1, a2, a3, a4, a13, 014, a17, 018 ZAE, W
:%Tflﬂl as,d15, a9, 211, A16, 210 Zﬂ*j—&ﬁﬁiﬁ (& aig %B%ﬂ), Blﬁﬁﬂiﬁﬁz,
MEEERN

ar a3 0 0 0 O

atqa a1 O 0 0

A= 0 a3 a1 O 0
0 0 0 a2 a4 O

0 a1z az

az 0 O 0 au

ar az 0 0 0 0
0 a4 a3 0 0 O

as Qai 0 0

14 Qa1 0 0 0
ao adj 0 0

= a3 0 as aj14 0

0 az aijg 0
aiz a2

0 0 0 a

o o o o
(o]
o]

aiz a2
0 0 0 i

o o o O
]
<

az
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ai 0 0 0
az 0 0

—a13 0 as Qaia 0 = 0,

o o o o

0 0 a1z a9
a2 0 0 0 ay

T as,ais, ag, a11,016,a10 = 6/ A.
A = 0, # as,a15, a9, a11, 616,010 IEAEEERK, 8 (1) F 1) ZFEA
B EBKEL. B2, Bl P AEREMEEA - — KR, SUBIA A ER R R ERH.



Geometries of matrices. I. Generalizations of von

Staudt’s theorem*

It was first shown in the author’s recent investigations on the theory of auto-
morphic functions of a matrix-variable that there are three types of geometry playing
important roles. Besides their applications, the author obtained a great many results
which seem to be interesting in themselves.

The main object of the paper is to generalize a theorem due to von Staudt, which
is known as the fundamental theorem of the geometry in the complex domain. The
statement of the theorem is:

Every topolagical transformation of the complex plane into itself, which leaves
the relation of harmonic separation invariant, is either a collineation or an anti-
collineation.

Since the fields and groupé may be varied, several generalizations of von
Staudt’s theorem will be given. The proofs of the theorems have interesting
corollaries,

The paper contains also some fundamental results which will be useful in suc-
ceeding papers.

The interest of the paper seems to be not only geometric but also algebraic, for
example we shall establish the following purely algebraic theorem:

Let M be the module formed by n-rowed symmetric matrices over the complez
field. Let T be a continuous (additive) automorphism of MM leaving the rank unaltered
and T'(:X) = iI'(X). Then I' is an inner automorphism of M, that is, we have a

nonsingular matric T such that
INX)=TXT'.

The author makes the paper self-contained in the sense that no knowledge of the

author’s contributions to the theory of automorphic functions is assumed.

* Presented to the Society, April 28, 1945; received by the editors November 20, 1944. Reprinted
from Transactions of the American Mathematical Society, 1945, B7: 441-481.



Geometries of matrices. 1. Generalizations of von Staudt’s theorem -9-

I. Geometry of symmetric matrices

Let ® be any field. In I, 11, and 111, capital Latin letters denote n x n matrices
unless the contrary is stated. But on the contrary, we use M (n.m) o denote an
n x m matrix, and M® = M) I and 0 denote the identity and zero matrices
respectively.

Throughout I, we use

0 I 10
=(5o) = (0)

which are 2n-rowed matrices.
1. Definitions

We make the following definitions.

A pair of matrices (Z1, Z5) is said to be symmetric if
(21, Z2)%( 21, Z2) =0,

that is, if Z;2Z5 = Z,Z{. The pair is said to be nonsingular if (Z1, Z5) is of rank n.

A 2n x 2n matrix ¥ is said to be symplectic if

TFT = 3.

C D

AB' = BA', CD' =DC', AD'—BC'=1I.

Explicitly, let

then we have

Further, it may be easily verified that
D -B
-1 _

(W1, W2} = Q(Z1, Z2)%

is also symplectic.
We define

to be a symplectic transformation, where @ is nonsingular and ¥ is symplectic.
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Since
(W, Wo)F (W, Wa)' = Q(Z1, Z2)3FX (21, 22)' Q)
a symplectic transformation carries symmetric (nonsingular) pairs into symmetric
(nonsingular) pairs.
We identify two nonsingular symmetric pairs of matrices (Z1, Z2) and (W1, Wa)
by means of the relation

(21, Z2) = Q(W1, Wa).

It is called a point of the space. The space so defined is unaltered under symplectic
transformations, which may be considered as the motions of the space.
If Z, and W, are both nonsingular and if (W1, Wa) = Q(Z1, Z2)%, let

W=-W[Wa, Z=-27'Z,,
then W and Z are both symmetric and
Z = (AW + B)(CW + D)™ 1.

Thus a symmetric pair of matrices may be considered as homogeneous coordinates
of a symmetric matrix. The terminology “geometry of symmetric matrices” is thus

justified.
2. Equivalence of points

Theorem 1  Any two nonsingular symmetric pairs of matrices are equivalent.
Or what is the same thing: every nonsingular symmetric pair is equivalent to (1, 0).
Proof Let (Z1,Z;) be a nonsingular symmetric pair.

(1) If Z, is nonsingular, we have

I S
(Z1,22) = Z:(1, Z{ Z2) = Z1(1,0) ( 0 I )’

where S = Z; ' Z, is symmetric, and then

I s
0 I
is symplectic.

(2) Suppose Z1 to be singular. We have nonsingular matrices P and @ such that

™M gr—r) )

Wl = PZlQ == ( O(n—nr) O(n_r)



