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Preface

Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba-
chevskij space, occupy a special place in geometry. They are most accessible to
our geometric intuition, making it possible to develop elementary geometry
in a way very similar to that used to create the geometry we learned at
school. However, since its basic notions can be interpreted in different ways,
this geometry can be applied to objects other than the conventional physical
space, the original source of our geometric intuition.

Euclidean geometry has for a long time been deeply rooted in the human
mind. The same is true of spherical geometry, since a sphere can naturally be
embedded into a Euclidean space. Lobachevskij geometry, which in the first
fifty years after its discovery had been regarded only as a logically feasible
by-product appearing in the investigation of the foundations of geometry, has
even now, despite the fact that it has found its use in numerous applications,
preserved a kind of exotic and even romantic element. This may probably be
explained by the permanent cultural and historical impact which the proof of
the independence of the Fifth Postulate had on human thought.

Nowadays modern research trends call for much more businesslike use of
Lobachevskij geometry. The traditional way of introducing Lobachevskij ge-
ometry, based on a kind of Euclid-Hilbert axiomatics, is ill suited for this
purpose because it does not enable one to introduce the necessary analytical
tools from the very beginning. On the other hand, introducing Lobachevskij
geometry starting with some specific model also leads to inconveniences since
different problems require different models. The most reasonable approach
should, in our view, start with an axiomatic definition, but it should be based
on a well-advanced system of notions and make it possible either to refer to
any model or do without any model at all.

Their name itself provides the description of the property by which spaces
of constant curvature are singled out among Riemannian manifolds. However,
another characteristic property is more important and natural for them — the
property of maximum mobility. This is the property on which our exposition
is based.

The reader should realize that our use of the term “space of constant cur-
vature” does not quite coincide with the conventional one. Usually one under-
stands it as describing any Riemannian manifold of constant curvature. Under
our definition (see Chap. 1, Sect. 1) any space of constant curvature turns out
to be one of the three spaces listed at the beginning of the Preface.

Although Euclidean space is, of course, included in our exposition as a
special case, we have no intention of introducing the reader to Euclidean
geometry. On the contrary, we make free use of its basic facts and theorems.
We also assume that the reader is familiar with the basics of linear algeb:a
and affine geometry, the notion of a smooth manifold and Lie group, and the
elements of Riemannian geometry.
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For the history of non-Fuclidean geometry and the development of its ideas
the reader is referred to relevant chapters in the books of Klein [1928], Kagan
[1949, 1956], Coxeter [1957], and Efimov [1978).
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Chapter 1
Basic Structures

§ 1. Definition of Spaces of Constant Curvature

This chapter provides the definition of spaces of constant curvature and of
their basic structures, and describes their place among homogeneous spaces
on the one hand and Riemannian manifolds on the other. If the reader’s main
aim is just to study Lobachevskij geometry, no great damage will be done if
he skips Theorems 1.2 and 1.3 and the proof of Theorem 2.1,

1.1. Lie Groups of Transformations. We assume that the reader is
familiar with the notions of a (real) smooth manifold and of a (real) Lie
group. The word “smooth” (manifold, function, map etc.) always means that
the corresponding structure is C*°. All smooth manifolds are assumed to have
a countable base of open subsets. By T, (X) we denote the tangent space to a
manifold X at a point z, and by d;g the differential of the map g at a point
z. If no indication of the point is necessary the subscript is omitted.

We now recall some basic definitions of Lie group theory. (For more details
see, e.g. Vinberg and Onishchik [1988].)

A group G of transformations' of a smooth manifold X endowed with a Lie
group structure is said to be a Lie group of transformations of the manifold
X if the map

GxX—X, (9,2) g7,

is smooth, which means that the (local) coordinates of the point gz are smooth
functions of the coordinates of the element g and the point z. Then the sta-
bilizer
G:={9€eG:gz=x}

of any point z € X is a (closed) Lie subgroup of the group G. Its linear
representation g — d,g in the space T(X) is called the isotropy representation
and the linear group d;G; is called the isotropy group at the point x.

The stabilizers of equivalent points z and ¥ = gz (g € G) are conjugate
in G, i.e.

Gy = ng.q_l-

The corresponding isotropy groups are related in the following way:
daGy = (d29)(d2G)(dag) -

In other words, if tangent spaces T;(X) and T, (Y") are identified by the iso-
morphism d.g, then the group d,G, coincides with the group d,G,,.

! By a group of transformations we understand an effective group of transformations,
i.e. we assume that different transformations correspond to different elements of
the group.
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If G is a transitive Lie group of transformations of a manifold X, then for
each point z € X the map

G/G:—~ X, gGzr gz

is a diffeomorphism commuting with the action of the group G. (The group
G acts on the manifold G/G; of left cosets by left shifts.) In this case the
manifold X together with the action of G on it can be reconstructed from the
pair (G, G).

Definition 1.1. A smooth manifold X together with a given transitive
Lie group G of its transformations is said to be a homogeneous space.

We denote a homogeneous space by (X, G), or simply X.
A homogeneous space (X, G) is said to be connected or simply-connected?
if the manifold X has this property.

1.2, Group of Motions of a Riemannian Manifold. A Riemannian
metric is said to be defined on a smooth manifold X if a Euclidean metric is
defined in each tangent space T;(X), and if the coefficients of this metric are
smooth functions in the coordinates of z. A diffeomorphism g of a Riemannian
manifold X is called a motion (or an isometry) if for each point z € X the
linear map

dog : To(X) = Tya(X)

is an isometry. The set of all motions is evidently a group.
Each motion g takes a geodesic into a geodesic, and therefore commutes
with the exponential map, i.e.

g(exp§) = expdg(§)

for all £ € T(X). Hence each motion g of a connected manifold X is uniquely
defined by the image gz of some point & € X and the differential d,g at that
point. This enables us to introduce coordinates into the group of motions,
turning it into a Lie group. To be more precise, the following theorem holds.

Theorem 1.2 (Kobayashi and Nomizu [1981]). The group of motions of a
Riemannian manifold X is uniquely endowed with a differentiable structure,
which turns it into a Lie group of transformations of the manifold X .

If the group of motions of a Riemannian manifold X is transitive, then X
is complete. Indeed, in this case there exists € > 0, which does not depend
on z, such that for any point £ € X and for any direction at that point there
exists a geodesic segment of length ¢ issuing from z in that direction. This
implies that each geodesic can be continued indefinitely in any direction.

A Riemannian manifold X is said to have constant curvature c if at each
point its sectional curvature along any plane section equals c.

2 We assume that any simply-connected space is, by definition, connected.



10 D.V. Alekseevskij, E.B. Vinberg, A.S. Solodovnikov

Simply-connected complete Riemannian manifolds of constant curvature
admit a convenient characterization in terms of the group of motions.

Theorem 1.3 (Wolf [1972]). A simply-connected complete Riemannian
manifold is of constant curvature if and only if for any pair of points z,y € X
and for any isometry ¢ : To(X) — Ty(X) there exists a (unique) motion g
such that gr = y and dzg = ¢.

The first part of the statement follows immediately from the fact that
motions preserve curvature and that any given two-dimensional subspace of
the space T;(X) can, by an appropriate isometry, be taken into any given
two-dimensional subspace of the space Ty, (X). For the proof of the converse
statement see Chap. 8, Sect. 1.3.

1.3. Invariant Riemannian Metrics on Homogeneous Spaces. Let
(X,G) be a homogeneous space. A Riemannian metric on X is said to be
invarient (with respect to G) if all transformations in G are motions with
respect to that metric. An invariant Riemannian metric can be reconstructed
from the Euclidean metric it defines on any tangent space T(X). This Eu-
clidean metric is invariant under the isotropy group d.G.. Conversely, if a
Euclidean metric is defined in the space T;(X) and is invariant under the
isotropy group, then it can be moved around by the action of the group G
thus yielding an invariant Riemannian metric on X. Thus, an invariant Rie-
mannisn metric on X exists if and only if there is a Euclidean metric in the
tangent space invariant under the isotropy group.

We now consider the question of when such a metric is unique.

A linear group H acting in a vector space V is said to be irreducible if
there is no non-trivial subspace U C V invariant under H.

Lemma 1.4. Let H be a linear group acting in o real vector space V. If
H is irreducible, then up to e (positive) scalar multiple there is at most one
Buclidean metric in the space V invariant under H.

Proof. Consider any invariant Euclidean metric (if such a metric exists)
turning V into a Euclidean space. Then each invariant Euclidean metric ¢
on V is of the form ¢(z) = (Az, z), where A is a positive definite symmetric
operator commuting with all operators in H. Let ¢ be any eigenvalue of A. The
corresponding eigenspace is invariant under H, and consequently coincides
with V. This implies that A = cE, i.e. g(z) = c(z, ). O

The Lemma implies that if the isotropy group of a homogeneous space is
irreducible, then there exists, up to a (positive) scalar multiple, at most one
invariant Riemannian metric.

If a homogeneous space X is connected and admits an invariant Riemannian
* metric, then the isotropy representation is faithful at each point z € X, since
each element of the stabilizer of z, being a motion, is uniquely defined by its
differential at that point.
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1.4. Spaces of Constant Curvature

Definition 1.5. A simply-connected homogeneous space is said to be a
space of constant curvature if its isotropy group (at each point) is the group
of all orthogonal transformations with respect to some Euclidean metric.

The last condition is called the mazimum mobility aziom. For the possibil-
ity of giving up the condition that the space is simply connected see Sect. 2.5.

Let (X, G) be a space of constant curvature. The maximum mobility axiom
immediately implies that there is a unique (up to a scalar multiple) invariant
Riemannian metric on X. With respect to this metric X is a Riemannian
manifold of constant curvature (the trivial part of Theorem 1.3). The fact that
G is a transitive group implies that X is a complete Riemannian manifold.
Note also that G is the group of all its motions. Indeed, for each motion g and
for each point € X, there exist an element g, € G such that gz = g;z, i.e.
(97'g)z = =, and an element g € G, such that d.(g97'g) = d.g.- But then
gi'g=goand g=g1g; €G.

Conversely, by Theorem 1.3, any simply-connected complete Riemannian
manifold X of constant curvature satisfies the conditions of Definition 1.5 if
one takes for G the group of all its motions.

Thus, spaces of constant curvature (in the sense of the above definition)
are simply-connected complete Riemannian manifolds of constant curvature
considered up to change of scale, which explains their name. However, below
in presenting the geometry of these spaces the fact that they are of constant
Riemannian curvature is never used directly, and it is quite sufficient for the
reader to be familiar with the simplest facts of Riemannian geometry (in-
cluding the notion of a geodesic but excluding that of parallel translation or
curvature).

Let (X, G) be a space of constant curvature. Since the manifold X is simply-
connected, firstly it is orientable, and secondly each connected component of
the group G contains exactly one connected component of the stabilizer (of
each point). Since the isotropy representation is faithful, the stabilizer is iso-
morphic to the orthogonal group. The orthogonal group consists of two con-
nected components, one including all orthogonal transformations with deter-
minant 1, the other including all orthogonal transformations with determinant
—1. Hence, the group of motions of a space of constant curvature consists of
two connected components, one of which includes all the motions preserving
orientation (proper motions) and the other includes all motions reversing it

(improper motions).

1.5. Three Spaces. For each n > 2 there are at least three n-dimensional
spaces of constant curvature.

1. Euclidean Space E™. Denoting the coordinates in the space R" by
Z1,...,Zy, we define the scalar product by the formula
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(z,9) =z1y1 + ... + TnlYn,

thus turning R” into a Euclidean vector space.

Let
X=R", G=T,ANO, (semidirect product),

where T, is the group of parallel translations (isomorphic to R™) and O, is
the group of orthogonal transformations of R”™.

For any parallel translation ¢, along a vector ¢ € R™ and any orthogonal
transformation ¢ € O, one has

‘Pta‘P_l = tgp(n)7

which shows that G is indeed a group. Evidently, G acts transitively on X.

For each £ € X the tangent space T (X) is naturally identified with the
space R™. The isotropy group then coincides with the group O,,.

Thus (X, G) is a space of constant curvature. It is called the n-dimensional
Euclidean space, and denoted by E™.

The Riemannian metric on the space E™ is induced by the Euclidean metric
on the space R", i.e. it is of the form

ds? = da? +... +dz2.

Its curvature is 0.
2. Sphere S™. Denoting the coordinates in the space R®*! by z¢,z,...,Zp,
we introduce a scalar product in R**! by the formula

(z,9) = Zoto + T1y1 + - - . + ZTn¥n,

which turns R**! into a Euclidean vector space.
Let
X={zeR":22+zl+...+22 =1}, G=Opnn.

For each x € X the tangent space T, (X) is naturally identified with the
orthogonal complement to the vector z in the space R™*1. If {e;,...,e,} is an
orthonormal basis in the space T(X), then {z,e1,...,e,} is an orthonormal
basis in the space R™*1.

Since each orthonormal basis in the space R**! can, by an appropriate or-
thogonal transformation, be taken into any other orthonormal basis, the group
G acts transitively on X, and the isotropy group at each point z coincides
with the group of all orthogonal transformations of the space T, (X).

For n > 2 the manifold X is simply-connected and hence (X, G) is a space
of constant curvature. It is called the n-dimensional sphere and denoted by
S". '

The Riemannian metric on the space S™ is induced by the Euclidean metric
on R™t1 ie. it is of the form

ds? = dz? 4+ da? + ... + dz?.
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(Remember that the coordinate functions zg, z1,...,Z, are not independent
on S™.) The curvature of this metric is 1.

3. Lobachevskij Space JI™. Denoting the coordinates in the space R**+? by
Zg,Z1,- .., Tn, We introduce a scalar product in R”+! by the formula

(z,y) = —Zoyo + Tap1 + - .. + TnYn,

which turns R®*? into a pseudo-Euclidean vector space, denoted by R™1,
Each pseudo-orthogonal (i.e. preserving the above scalar product) trans-
formation of R™! takes an open cone of time-like vectors

C={reR™ :(z,z) <0}
consisting of two connected components
Ct={zeC:zy>0}, C ={z€C:x <0}

onto itself.

Denote by O,,; the group of all pseudo-orthogonal transformations of the
space R™!, and by O, its subgroup of index 2 consisting of those pseudo-
orthogonal transformations which map each connected component of the cone
C onto itself. Let

X={zeR":—z2+z2+.. . +22=-1,2, >0}, G=0,,.

A basis {eg,€),...,€,} is said to be orthonormal if (eg,e9) = —1, (;,€;) =
1for i # 0 and (e;,e;) = 0 for i # j. For example, the standard basis is
orthonormal.

For any z € X the tangent space T,(X) is naturally identified with the
orthogonal complement of the vector z in the space R™!, which is an n-
dimensional Euclidean space (with respect to the same scalar product). If
{e1,...,exn} is an orthonormal basis in it, then {z,ey,...,e,} is an orthonor-
mal basis in the space R™!. It follows then (in the same way as for the sphere)
that the group G acts transitively on X and the isotropy group coincides with
the group of all orthogonal transformations of the tangent space.

The manifold X has a diffeomorphic projection onto the subspace o =
0, and is therefore simply-connected. Hence (X,G) is a space of constant
curvature. It is called the n-dimensional Lobachevskij space (or hyperbolic
space) and denoted by JI™.

The Riemannian metric on the space JI" is induced by the pseudo-
Euclidean metric on the space R™!, i.e. it is of the form

ds® = —dz? +dx? + ...+ da?.

Its curvature is —1.

Remark 1. For the sake of uniformity the procedure of embedding in R™+!
can also be applied to the Euclidean space E™. Its motions are then induced
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by linear transformations in the following way. Let zo,z),...,Zy be coordi-
nates in R"*!, and let R® C R"*! be the subspace defined by the equation
zg = 0. The space E™ can then be identified with the hyperplane z; = 1, its
motions being induced by linear transformations of the space R"+! preserv-
ing o and inducing orthogonal transformations in R™ (with respect to the
standard Euclidean metric). Note that under this interpretation the subspace
R™ may naturally be regarded as a tangent space of E™ (at any point).

Remark 2. All the above constructions can also be carried out in a
coordinate-free form. For example, the sphere S™ can be defined as the set of
vectors of square 1 in the (n + 1)-dimensional Euclidean vector space, and its
group of motions as the group of orthogonal transformations of that space.
The space JI" can be defined as the connected component of the set of vec-
tors of square —1 in the (n + 1)-dimensional pseudo-Euclidean vector space
of signature (n,1), and its group of motions as the index 2 subgroup of the
group of pseudo-orthogonal transformations of that space which consists of
transformations preserving each connected component of the cone of time-
like vectors. Another approach is to consider a coordinate system in which
the scalar product is not written in the standard way (but has the right sig-
nature).

Remark 8. For n = 1 and 0 the above constructions define the following
homogeneous spaces:

E'~J1' (Euclidean line),
81 (circle),

E°~JI° (point),

S°  (double point).

The spaces E ~ JI! and E° =~ JI° are spaces of constant curvature while,
under our definition, the spaces S! and S° do not belong to this class as they
are not simply connected.

The models of S™ and JI™ constructed above together with the model of
E™ given in Remark 1 will be called vector models, while the model of E™
described at the beginning of this section will be referred to as the affine
model. When there is a reason to indicate that a model under discussion is
related to a coordinate system in the above manner we will refer to it as a
standard vector (affine) model.

Unless otherwise stated we will assume that the Riemannian metric in S™
and JI" is normalized as in this section. If the Riemannian metric is divided
by k > 0, the curvature is multiplied by k2.

1.6. Subspaces of the Space R™!. In view of the extensive use below
of the vector model of the Lobachevskij space we now present the classifi-
cation of subspaces of the pseudo-Euclidean vector space R™!. A subspace
U c R™! is said to be elliptic (respectively, parabolic, hyperbolic) if the re-
striction of the scalar product in R™! to U is positive definite (respectively,
positive semi-definite and degenerate, indefinite). Subspaces of each type can



