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Preface

The main purpose of this book is to describe analytic techniques which are useful to
study questions such as linear series, multiplier ideals and vanishing theorems for
algebraic vector bundles. One century after the ground-breaking work of Riemann
on geometric aspects of function theory, the general progress achieved in differ-
ential geometry and global analysis on manifolds resulted into major advances in
the theory of algebraic and analytic varieties of arbitrary dimension. One cen-
tral unifying concept is positivity, which can be viewed either in algebraic terms
(positivity of divisors and algebraic cycles), or in more analytic terms (plurisubhar-
monicity, Hermitian connections with positive curvature). In this direction, one of
the most basic results is Kodaira’s vanishing theorem for positive vector bundles
(1953—1954), which is a deep consequence of the Bochner technique and the the-
ory of harmonic forms initiated by Hodge during the 1940’s. This method quickly
led Kodaira to the well-known embedding theorem for projective varieties, a far
reaching extension of Riemann’s characterization of abelian varieties. Further re-
finements of the Bochner technique led ten years later to the theory of L? estimates
for the Cauchy-Riemann operator, in the hands of Kohn, Andreotti-Vesentini and
Hoérmander among others. Not only can vanishing theorems be proved or reproved
in that manner, but perhaps more importantly, extremely precise information of a
quantitative nature can be obtained about solutions of 9-equations, their zeroes,
poles and growth at infinity.

We try to present here a condensed exposition of these techniques, assuming
that the reader is already somewhat acquainted with the basic concepts pertaining
to sheaf theory, cohomology and complex differential geometry. In the final chap-
ter, we address very recent questions and open problems, e.g. results related to the
finiteness of the canonical ring and the abundance conjecture, as well as results
describing the geometric structure of Kéhler varieties and their positive cones.

This book is an expansion of lectures given by the author at the Park City
Mathematics Institute in 2008 and was published partly in Analytic and Algebraic
Geometry, edited by Jeff McNeal and Mircea Mustata, It is a volume in the Park

City Mathematics Series, a co-publication of the Park City Mathematics Institute
and the American Mathematical Society.

Jean-Pierre Demailly

Université de Grenoble I, Institut Fourier
Saint-Martin d’Heres

April 21, 2010
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Introduction

This introduction will serve as a general guide for reading the various parts of
this text. The first three chapters briefly introduce basic materials concerning
complex differential geometry, Dolbeault cohomology, plurisubharmonic functions,
positive currents and holomorphic vector bundles. They are mainly intended to
fix notation. Although the most important concepts are redefined, readers will
probably need to already possess some related background in complex analysis
and complex differential geometry — whereas the expert readers should be able
to quickly proceed further.

The heart of the subject starts with the Bochner technique in Chapter 4, lead-
ing to fundamental L? existence theorems for solutions of O-equations in Chapter 5.
What makes the theory extremely flexible is the possibility to formulate existence
theorems with a wide assortment of different L? norms, namely norms of the form
/ Pt |2¢=2¢ where ¢ is a plurisubharmonic or strictly plurisubharmonic function
on the given manifold or variety X. Here, the weight ¢ need not be smooth, and
on the contrary, it is extremely important to allow weights which have logarithmic
poles of the form ¢(2) = clog )~ |g;|?, where ¢ > 0 and (g;) is a collection of holo-
morphic functions possessing a common zero set Z C X. Following Nadel [Nad89],
one defines the multiplier ideal sheaf #(p) to be the sheaf of germs of holomorphic
functions f such that |f|?e~2¢ is locally summable. Then S(p) is a coherent al-
gebraic sheaf over X and HY(X, Kx ® L®.4(¢)) = 0 for all ¢ > 1 if the curvature
of L is positive as a current. This important result can be seen as a generalization
of the Kawamata-Viehweg vanishing theorem [Kaw82, Vie82], which is one of the
cornerstones of higher dimensional algebraic geometry, especially in relation with
Mori’s minimal model program.

In the dictionary between analytic geometry and algebraic geometry, the ideal
S(p) plays a very important role, since it directly converts an analytic object
into an algebraic one, and, simultaneously, takes care of the singularities in a
very efficient way. Another analytic tool used to deal with singularities is the
theory of positive currents introduced by Lelong [Lel57]. Currents can be seen as
generalizations of algebraic cycles, and many classical results of intersection theory
still apply to currents. The concept of Lelong number of a current is the analytic
analogue of the concept of multiplicity of a germ of algebraic variety. Intersections

of cycles correspond to wedge products of currents (whenever these products are
defined).
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Besides the Kodaira-Nakano vanishing theorem, one of the most basic “effec-
tive result” expected to hold in algebraic geometry is expressed in the following
conjecture of Fujita [Fuj87]: if L is an ample (i.e. positive) line bundle on a pro-
jective n-dimensional algebraic variety X, then Kx + (n + 1)L is generated by
sections and Kx + (n+2)L is very ample. In the last two decades, a lot of efforts
have been brought for the solution of this conjecture — but reaching the expected
optimal bounds will probably require new ideas. The first major results are the
proof of the Fujita conjecture in the case of surfaces by Reider [Rei88] (the case
of curves is easy and has been known since a very long time), and the numeri-
cal criterion for the very ampleness of 2K x + L given in [Dem93b], obtained by
means of analytic techniques and Monge-Ampeére equations with isolated singu-
larities. Alternative algebraic techniques were developed slightly later by Kollar
[Kol92], Ein-Lazarsfeld [EL93], Fujita [Fuj93], Siu [Siu95, 96], Kawamata [Kaw97]
and Helmke [Hel97]. We will explain here Siu’s method because it is technically
the simplest method; one of the results obtained by this method is the following
effective result: 2K x + mL is very ample for m > 2 + (3":1). The basic idea is
to apply the Kawamata-Viehweg vanishing theorem, and to combine this with the
Riemann-Roch formula in order to produce sections through a clever induction
procedure on the dimension of the base loci of the linear systems involved.

Although Siu’s result is certainly not optimal, it is sufficient to obtain a nice
constructive proof of Matsusaka’s big theorem [Siu93, Dem96]. The result states
that there is an effective value mg depending only on the intersection numbers
L™ and L™ ! . Ky, such that mL is very ample for m > mg. The basic idea
is to combine results on the very ampleness of 2K x + mL together with the
theory of holomorphic Morse inequalities [Dem85b]. The Morse inequalities are
used to construct sections of m’L — Kx for m’ large. Again this step can be
made algebraic (following suggestions by F. Catanese and R. Lazarsfeld), but the
analytic formulation apparently has a wider range of applicability.

In the subsequent chapters, we pursue the study of L? estimates, in relation
with the Nullstellenstatz and with the extension problem. Skoda [Sko72b, 78]
showed that the division problem f =3 g;h; can be solved holomorphically with
very precise L? estimates, provided that the L2 norm of |f]1g|~? is finite for some
sufficiently large exponent p (p > n = dim X is enough). Skoda’s estimates have
a nice interpretation in terms of local algebra, and they lead to precise qualita-
tive and quantitative estimates in connection with the Bézout problem. Another
very important result is the L? extension theorem by Ohsawa-Takegoshi [0T87,
Ohs88|, which has also been generalized later by Manivel [Man93]. The main
statement is that every L? section f of a suitably positive line bundle defined on
a subavariety Y C X can be extended to a L? section f defined over the whole
of X. The positivity condition can be understood in terms of the canonical sheaf
and normal bundle to the subvariety. The extension theorem turns out to have
an incredible amount of important consequences: among them, let us mention
for instance Siu’s theorem [Siu74] on the analyticity of Lelong numbers, the basic
approximation theorem of closed positive (1, 1)-currents by divisors, the subaddi-
tivity property .¥(p + 1) C .4(¢).4(¢) of multiplier ideals [DEL00], the restriction
formula ¥(¢)y) C F(¢)|y, ... A suitable combination of these results yields an-
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other important result of Fujita [Fuj94] on approximate Zariski decomposition, as
we show in Chapter 14.

In Chapter 15, we show how subadditivity can be used to derive an “equi-
singular” approximation theorem for (almost) plurisubharmonic functions: any
such function can be approximated by a sequence of (almost) plurisubharmonic
functions which are smooth outside an analytic set, and which define the same
multiplier ideal sheaves. From this, we derive a generalized version of the hard
Lefschetz theorem for cohomology with values in a pseudo-effective line bundle;
namely, the Lefschetz map is surjective when the cohomology groups are twisted
by the relevant multiplier ideal sheaves.

Chapter 16 explains the proof of Siu’s theorem on the invariance of plurigenera,
according to a beautiful approach developped by Mihai P&un [P&u07]. The proofs
consists of an iterative process based on the Ohsawa-Takegoshi theorem, and a
very clever limiting argument for currents.

Chapters 17 and 18 are devoted to the study of positive cones in Kahler or
projective geometry. Recent “algebro-analytic” characterizations of the Kihler
cone [DP04] and the pseudo-effective cone of divisors [BDPP04] are explained in
detail. This leads to a discussion of the important concepts of volume and mobile
intersections, following S. Boucksom’s PhD work [Bou02]. As a consequence, we
show that a projective algebraic manifold has a pseudo-effective canonical line
bundle if and only if it is not uniruled.

Chapter 19 presents further important ideas of H. Tsuji, later refined by Bernd-
tsson and P&dun, concerning the so-called “super-canonical metrics” , and their
interpretation in terms of the invariance of plurigenera and of the abundance
conjecture. In the concluding Chapter 20, we state Pdun’s version of the Shokurov-
Hacon-McKernan-Siu non vanishing theorem and give an account of the very recent
approach of the proof of the finiteness of the canonical ring by Birkar-P&un [BiP09)
based on the ideas of Hacon-McKernan and Siu.

I






Chapter 1

Preliminary Material: Cohomology, Currents

1.A. Dolbeault Cohomology and Sheaf Cohomology

Let X be a C-analytic manifold of dimension n. We denote by AP9T% the bundle
of differential forms of bidegree (p,q) on X, i.e., differential forms which can be
written as

U= Z U]’JdZI/\dZ_].
[I|=p,|J|=q
Here (z1,...,2n) denote arbitrary local holomorphic coordinates on X,
I=(i1,...,ip), J=(j1, ... ,Jq) are multi-indices (increasing sequences of inte-
gers in the range [1, ... ,n], of lengths |I| = p, |J| = q), and
dZ]:Zdzil/\”'/\dZ,;p, dEJ::dEjl/\-u/\dqu.

Let ‘€79 be the sheaf of germs of complex valued differential (p, ¢)-forms with €¢>
coefficients. Recall that the exterior derivative d splits as d = d’ + d” where

ou
du= 81,1 dzx Adzg Ad3),
=g, |F=gi<kgn ©°F
ou
d'u = I’szk/\dzl/\dz]

2k
[I|=p,|J|=q,1<k<n

are of type (p+1,q), (p,q + 1) respectively. The well-known Dolbeault-Grothen-
dieck lemma asserts that any d”-closed form of type (p,q) with ¢ > 0 is locally
d”-exact (this is the analogue for d” of the usual Poincaré lemma for d, see e.g.
[Hor66]). In other words, the complex of sheaves (€P° d”) is exact in degree
q > 0; in degree ¢ = 0, Kerd" is the sheaf Q% of germs of holomorphic forms of
degree p on X.

More generally, if F' is a holomorphic vector bundle of rank r over X, there is a
natural d” operator acting on the space ‘€>° (X, AP9T% ® F) of smooth (p, q)-forms
with values in F; if s = Z1<Agr sxey is a (p, g)-form expressed in terms of a local
holomorphic frame of F, we simply define d”s := 3" d”s) ® ey, observing that the
holomorphic transition matrices involved in changes of holomorphic frames do not
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affect the computation of d”. Tt is then clear that the Dolbeault-Grothendieck
lemma still holds for F-valued forms. For every integer p = 0,1, ... ,n, the Dol-
beault Cohomology groups HP+9(X, F') are defined to be the cohomology groups of
the complex of global (p, q) forms (graded by q):

(1.1) HP4(X,F) = H1(€®(X,AP* T ® F)).

Now, let us recall the following fundamental result from sheaf theory (De Rham-
Weil isomorphism theorem): let (£°,d) be a resolution of a sheaf 91 by acyclic
sheaves, i.e. a complex of sheaves (2£°,) such that there is an exact sequence of
sheaves

, 0 7 .
0—st L0 Syt e Bt L

and H*(X, %) = 0forallg > 0 and s > 1. Then there is a functorial isomorphism
(1.2) HY(D(X,%£%)) — HY(X, ).

We apply this to the following situation: let ‘€(F')P? be the sheaf of germs of
€ sections of AP?T% ® F. Then (‘€(F)P*,d") is a resolution of the locally free
O x-module Qf ® @(F) (Dolbeault-Grothendieck lemma), and the sheaves € (F)P4
are acyclic as modules over the soft sheaf of rings “¢>°. Hence by (1.2) we get

(1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector
bundle F' on X, there is a canonical isomorphism.:

HP(X,F) ~ HY(X,0% ® O(F)).

If X is projective algebraic and F is an algebraic vector bundle, Serre’s
GAGA theorem [Ser56] shows that the algebraic sheaf cohomology group
H1(X, Q% ® O(F)) computed with algebraic sections over Zariski open sets is
actually isomorphic to the analytic cohomology group. These results are the most
basic tools to attack algebraic problems via analytic methods. Another important
tool is the theory of plurisubharmonic functions and positive currents originated
by K. Oka and P. Lelong in the decades 1940-1960.

1.B. Plurisubharmonic Functions

Plurisubharmonic functions have been introduced independently by Lelong and

Oka in the study of holomorphic convexity. We refer to [Lel67, 69] for more
details.

(1.4) Definition. A function u : Q@ — [—o0, +o00[ defined on an open subset
Q C C" is said to be plurisubharmonic (psh for short) if

(a) u is upper semicontinuous ;
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(b) for every complex line L c C", uronr s subharmonic on QN L, that is, for
all a € Q and £ € C™ with |¢| < d(a,CQ), the function u satisfies the mean
value inequality:

1 27 -
< — 3 .
u(a) < 5 /0 u(a + €' £) df

The set of psh functions on Q is denoted by Psh(Q).

We list below the most basic properties of psh functions. They all follow easily
from the definition.

(1.5) Basic Properties.

(a) Every function u € Psh(Q) is subharmonic, namely it satisfies the mean value
inequality on Euclidean balls or spheres:

1
P -
< /B IRCLC

for every a € Q and r < d(a,C). Either v = —oc0 or u € L . on every
connected component of 2.

u(a)

(b) For any decreasing sequence of psh functions uy € Psh(Q), the limit u = lim uy,
is psh on .

(c) Let u € Psh(Q) be such that u # —oco on every connected component of . If
(pe) is a family of smoothing kernels, then u x pe is € and psh on

Qe = {z €Q; d(z,0Q) > ¢},

the family (u * p.) is increasing in ¢ and lim, g u* p, = u.

(d) Let ui,...,u, € Psh(Q) and x : R® — R be a convex function such that
X(t1, ... ,tp) is increasing in each tj. Then x(u1,...,up) is psh on Q. In
particular u; +-- - +up, max{uy, ... yUp}, log(e™ + - - +e¥r) are psh on Q.

a

(1.6) Lemma. A function u € C2(, R) is psh on Q if and only if the Hermitian
form:

Hu@(©) = S 0%u/02,0%(a) &,

1<j,k<n
s semi-positive at every point a € ().
Proof. This is an easy consequence of the following standard formula:
2

2 Jo

i6 . — 2 ' ﬁ ula
W+ 60— uia) = 2 [ /!<I<tH( +CE)(E) dA(Q),

where d) is the Lebesgue measure on C. Lemma 1.6 is a strong evidence that
plurisubharmonicity is the natural complex analogue of linear convexity. O
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For non smooth functions, a similar characterization of plurisubharmonicity
can be obtained by means of a regularization process.

(1.7) Theorem. If u € Psh(Q), u # —oo on every connected component of €2,
then for all £ € C"

Py =
Hu@) = > g o5&k e 2'(Q)

1<), k<n

is a positive measure. Conversely, if v € U'(Q) is such that Hv(§) is a positive
measure for every €& € C", there exists a unique function u € Psh(Q2) which is
locally integrable on 0 and such that v is the distribution associated to w.

In order to get a better geometric insight of this notion, we assume more gene-
rally that u is a function on a complex n-dimensional manifold X. If ®: X — Y
is a holomorphic mapping and if v € C?(Y,R), we have d'd"(vo ®) = ®*d'd"v,
hence

H(vo ®)(a,€) = Ho(®(a), ®(a)).

In particular Hu, viewed as a Hermitian form on T'x, does not depend on the
choice of coordinates (z1, ..., 2n). Therefore, the notion of psh function makes
sense on any complex manifold. More generally, we have

(1.8) Proposition. If ® : X — Y is a holomorphic map and v € Psh(Y'), then
vo ® € Psh(X).

(1.9) Example. It is a standard fact that log |z| is psh (i.e. subharmonic) on C.
Thus log|f| € Psh(X) for every holomorphic function f € H®(X,@x). More
generally

log (| f1|** + - + | fq|*®) € Psh(X)

for every f; € H%(X,@x) and a; > 0 (apply Property 1.5 (d) with u;=c; log|f;]).
We will be especially interested in the singularities obtained at points of the zero
variety f1 = --- = f; = 0, when the o are rational numbers. O

(1.10) Definition. A psh function u € Psh(X) will be said to have analytic
singularities if u can be written locally as

«a
u=Zlog (" +- +|fnl*) +v,
where o € Ry, v is a locally bounded function and the f; are holomorphic func-

tions. If X is algebraic, we say that u has algebraic singularities if u can be written
as above on sufficiently small Zariski open sets, with a € Q4 and f; algebraic.

We then introduce the ideal ¥ = ¥(u/c) of germs of holomorphic functions h
such that |h| < Ce*/® for some constant C, i.e.

Ih| < C(Ifrl + -+ |fn])-
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This is a globally defined ideal sheaf on X, locally equal to the integral closure .¥
of the ideal sheaf .¥ = (f1, ..., fn), thus ¥ is coherent on X. If (91, --- ,gnv) are
local generators of ¥, we still have

'8
u=log(lg:1* + - +lgnI*) + O(1).

If X is projective algebraic and u has analytic singularities with o € Q4+, then
u automatically has algebraic singularities. From an algebraic point of view, the
singularities of u are in 1:1 correspondence with the “algebraic data” (¥,). Later
on, we will see another important method for associating an ideal sheaf to a psh
function.

(1.11) Exercise. Show that the above definition of the integral closure of an
ideal .¥ is equivalent to the following more algebraic definition: . consists of all
germs h satisfying an integral equation:

hd+a1hd_1+"'+ad_1h+ad=0, akG-jk.

Hint. One inclusion is clear. To prove the other inclusion, consider the normaliza-
tion of the blow-up of X along the (non necessarily reduced) zero variety V(.%).
O

1.C. Positive Currents

The reader can consult [Fed69] for a more thorough treatment of current theory.
Let us first recall a few basic definitions. A current of degree ¢ on an oriented
differentiable manifold M is simply a differential g-form © with distribution co-
efficients. The space of currents of degree g over M will be denoted by @'9(M).
Alternatively, a current of degree ¢ can be seen as an element © in the dual space
Dy, (M) = (DP(M ))/ of the space ©?(M) of smooth differential forms of degree
p = dim M — g with compact support; the duality pairing is given by

(1.12) (©,a) =/M@/\a, o € DP(M).

A basic example is the current of integration [S] over a compact oriented submani-
fold S of M :

(1.13) ([S], @) = / o, dega =p=dimgS.
s

Then [S] is a current with measure coefficients, and Stokes’ formula shows that
d[S] = (-=1)?71[88], in particular d[S] = 0 if S has no boundary. Because of this
example, the integer p is said to be the dimension of © when © ¢ Dy, (M). The
current © is said to be closed if d© = 0.
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On a complex manifold X, we have similar notions of bidegree and bidimen-
sion; as in the real case, we denote by

DPUX) =Dy 0 o(X),  n=dimX,

the space of currents of bidegree (p,q) and bidimension (n — p,n — q) on X.
According to [Lel57], a current © of bidimension (p,p) is said to be (weakly)
positive if for every choice of smooth (1,0)-forms a1, ... ,a; on X the distribution

(1.14) © ANioy Aay A+ Niapy AT, s a positive measure.

(1.15) Exercise. If © is positive, show that the coefficients © ; of © are complex
measures, and that, up to constants, they are dominated by the trace measure:

1 _  PYPR
ae=e/\;!/31’=2 P3N O, B=gdd"2l* =5 > dz Adz,

1<j<n

which is a positive measure.
Hint. Observe that ) ©y s is invariant by unitary changes of coordinates and that
the (p, p)-forms ia; A@y A -+ - Alap AT, generate APPTE, as a C-vector space. [

A current © =137, .y, Ojkdz; A dzg of bidegree (1,1) is easily seen to be

positive if and only if the complex measure 5 )\ijejk is a positive measure for
every n-tuple (A1, ... ,\,) € C™.

(1.16) Example. If u is a (not identically —oo) psh function on X, we can
associate with u a (closed) positive current © = i99u of bidegree (1,1). Conversely,
each closed positive current of bidegree (1,1) can be written under this form on
any open subset Q C X such that H3z(,R) = H'(Q,6@) = 0, e.g. on small
coordinate balls (exercise to the reader). O

It is not difficult to show that a product ©; A --- A ©4 of positive currents of
bidegree (1, 1) is positive whenever the product is well defined (this is certainly the
case if all ©; but one at most are smooth; much finer conditions will be discussed
in Chapter 2).

We now discuss another very important example of closed positive current.
In fact, with every closed analytic set A C X of pure dimension p is associated a
current of integration [A] such that:

(1.17) ([A],a)z/A a, a€DPP(X),

reg

obtained by integrating over the regular points of A. In order to show that (1.17)
is a correct definition of a current on X, one must show that Areg has locally finite
area in a neighborhood of Aging. This result, due to [Lel57] is shown as follows.
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Suppose that 0 is a singular point of A. By the local parametrization theorem for
analytic sets, there is a linear change of coordinates on C” such that all projections

w1 (21, ..., 20) > (2, ... ) Zip)

define a finite ramified covering of the intersection A N A with a small polydisk
A in C" onto a small polydisk A; in CP. Let n; be the sheet number. Then
the p-dimensional area of A N A is bounded above by the sum of the areas of its
projections counted with multiplicities, i.e.

Area(AN A) <) " nrVol(Ay).
The fact that [A] is positive is also easy. In fact
g ANa A== Niap AT = |det(an) [ iwy AT A -+ - Afwy AT,

if aj = ) ajxdwy in terms of local coordinates (w1, ... ,wp) on Areg. This shows
that all such forms are > 0 in the canonical orientation defined by iw; AW A--- A
wp A Wp. More importantly, Lelong [Lel57] has shown that [A] is d-closed in X ;
even at points of Asing. This last result can be seen today as a consequence of
the Skoda-El Mir extension theorem. For this we need the following definition: a
complete pluripolar set is a set E such that there is an open covering (£2;) of X
and psh functions u; on Q; with ENQ, = uj_l(—oo). Any (closed) analytic set is
of course complete pluripolar (take u; as in Example 1.9).

(1.18) Theorem (Skoda [Sko82], El Mir [EM84], Sibony [Sib85]). Let E be a
closed complete pluripolar set in X, and let © be a closed positive current on
X N E such that the coefficients ©r,; of © are measures with locally finite mass
near E. Then the trivial extension © obtained by extending the measures © 1,0 by
0 on FE is still closed on X.

Lelong’s result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to
© = [Areg] on X N Aging.

Proof of Theorem 1.18. The statement is local on X , 80 we may work on a small
open set {2 such that ENQ = v~!(—00), v € Psh(Q). Let x : R — R be a convex
increasing function such that x(¢) = 0 for ¢ < —1 and x(0) = 1. By shrinking Q
and putting vk = x(k™v * p, ) with e, — 0 fast, we get a sequence of functions
vk € Psh(2) N €>°(2) such that 0 < v < 1, v¢ = 0 in a neighborhood of EN Q
and limvg(z) = 1 at every point of Q \ E. Let 6 € “€>°([0,1]) be a function such
that 6 =0 on [0,1/3],6 =1 on [2/3, 1] and 0 < 6 < 1. Then fov = 0 near ENS
and § ovy, — 1 on Q \ E. Therefore © = limg 4 oo (6 0 v5)© and

dO= lim ©Ad6ouv)
k—+o00
in the weak topology of currents. It is therefore sufficient to verify that

© A d'(§ ovg) converges weakly to 0 (note that d”© is conjugate to d'©, thus
d"© will also vanish).



