国外数学名著系列(续一)

(影印版)39

Yousef Saad

Iterative Methods for Sparse Linear Systems

Second Edition

稀疏线性系统的迭代方法

(第二版)

Iterative Methods for Sparse

Linear Systems

Second Edition

稀疏线性系统的迭代方法

(第二版)

Yousef Saad

斜 学 出 版 社 北 京

图字: 01-2008-5107

Original American edition published by:

SIAM: Society for Industrial and Applied Mathematics, Philadelphia,

Pennsylvania

Copyright © 2003. All rights reserved

This edition is authorized for sale only in: Mainland China excluding Hong Kong, Macau and Taiwan

图书在版编目(CIP)数据

稀疏线性系统的迭代方法: 第2版 = Iterative Methods for Sparse Linear Systems (Second Edition)/(美)萨阿德(Saad, Y.)著. 一影印版. 一北京: 科学出版社, 2009

(国外数学名著系列; 39)

ISBN 978-7-03-023483-4

I. 稀… II. 萨… III. 稀疏矩阵-迭代法-英文 IV. O241.6

中国版本图书馆 CIP 数据核字(2008) 第 186200 号

责任编辑:范庆奎/责任印刷:钱玉芬/封面设计:黄华斌

斜华出版 私出版

北京东黄城根北街 16 号 邮政编码: 100717

http://www.sciencep.com

中日4季化4到了印刷

科学出版社发行 各地新华书店经销

2009年1月第 一 版 开本: B5(720×1000)

2009年1月第一次印刷 印张: 34 1/2

印数: 1-2 000 字数: 665 000

定价: 98.00 元

(如有印装质量问题, 我社负责调换〈科印〉)

Preface to the Second Edition

In the six years that have passed since the publication of the first edition of this book, iterative methods for linear systems have made good progress in scientific and engineering disciplines. This is due in great part to the increased complexity and size of the new generation of linear and nonlinear systems that arise from typical applications. At the same time, parallel computing has penetrated the same application areas, as inexpensive computer power has become broadly available and standard communication languages such as MPI have provided a much needed standardization. This has created an incentive to utilize iterative rather than direct solvers, because the problems solved are typically from three-dimensional models for which direct solvers often become ineffective. Another incentive is that iterative methods are far easier to implement on parallel computers.

Although iterative methods for linear systems have seen a significant maturation, there are still many open problems. In particular, it still cannot be stated that an arbitrary sparse linear system can be solved iteratively in an efficient way. If physical information about the problem can be exploited, more effective and robust methods can be tailored to the solutions. This strategy is exploited by multigrid methods. In addition, parallel computers necessitate different ways of approaching the problem and solution algorithms that are radically different from classical ones.

Several new texts on the subject of this book have appeared since the first edition. Among these are the books by Greenbaum [154] and Meurant [208]. The exhaustive five-volume treatise by G. W. Stewart [273] is likely to become the de facto reference in numerical linear algebra in years to come. The related multigrid literature has also benefited from a few notable additions, including a new edition of the excellent *Multigrid Tutorial* [65] and a new title by Trottenberg et al. [285].

Most notable among the changes from the first edition is the addition of a sorely needed chapter on multigrid techniques. The chapters that have seen the biggest changes are Chapters 3, 6, 10, and 12. In most cases, the modifications were made to update the material by adding topics that have been developed recently or gained importance in the last few years. In some instances some of the older topics were removed or shortened. For example, the discussion on parallel architecture has been shortened. In the mid-1990s hypercubes and "fat-trees" were important topics to teach. This is no longer the case, since manufacturers have taken steps to hide the topology from the user, in the sense that communication has become much less sensitive to the underlying architecture.

The bibliography has been updated to include work that has appeared in the last few years, as well as to reflect the change of emphasis when new topics have gained importance. Similarly, keeping in mind the educational side of this book, many new exercises have

been added. The first edition suffered from many typographical errors, which have been corrected. Many thanks to those readers who took the time to point out errors.

I would like to reiterate my thanks to all my colleagues who helped make the first edition a success (see the preface to the first edition). I received support and encouragement from many students and colleagues to put together this revised volume. I also wish to thank those who proofread this book. I found that one of the best ways to improve clarity is to solicit comments and questions from students in a course that teaches the material. Thanks to all students in CSci 8314 who helped in this regard. Special thanks to Bernie Sheeham, who pointed out quite a few typographical errors and made numerous helpful suggestions.

My sincere thanks to Michele Benzi, Howard Elman, and Steve McCormick for their reviews of this edition. Michele proofread a few chapters thoroughly and caught a few misstatements. Steve's review of Chapter 13 helped ensure that my slight bias for Krylov methods (versus multigrid) was not too obvious. His comments were the origin of the addition of Section 13.7 (Multigrid versus Krylov Methods).

Finally, I would also like to express my appreciation to all SIAM staff members who handled this book, especially Linda Thiel and Lisa Briggeman.

Suggestions for Teaching

This book can be used as a text to teach a graduate-level course on iterative methods for linear systems. Selecting topics to teach depends on whether the course is taught in a mathematics department or a computer science (or engineering) department, and whether the course is over a semester or a quarter. Here are a few comments on the relevance of the topics in each chapter.

For a graduate course in a mathematics department, much of the material in Chapter 1 should be known already. For nonmathematics majors, most of the chapter must be covered or reviewed to acquire a good background for later chapters. The important topics for the rest of the book are in Sections 1.8.1, 1.8.3, 1.8.4, 1.9, and 1.11. Section 1.12 is best treated at the beginning of Chapter 5. Chapter 2 is essentially independent of the rest and could be skipped altogether in a quarter session, unless multigrid methods are to be included in the course. One lecture on finite differences and the resulting matrices would be enough for a nonmath course. Chapter 3 aims at familiarizing the student with some implementation issues associated with iterative solution procedures for general sparse matrices. In a computer science or engineering department, this can be very relevant. For mathematicians, a mention of the graph theory aspects of sparse matrices and a few storage schemes may be sufficient. Most students at this level should be familiar with a few of the elementary relaxation techniques covered in Chapter 4. The convergence theory can be skipped for nonmath majors. These methods are now often used as preconditioners, which may be the only motive for covering them.

Chapter 5 introduces key concepts and presents projection techniques in general terms. Nonmathematicians may wish to skip Section 5.2.3. Otherwise, it is recommended to start the theory section by going back to Section 1.12 on general definitions of projectors. Chapters 6 and 7 represent the heart of the matter. It is recommended to describe the first algorithms carefully and emphasize the fact that they generalize the one-dimensional methods covered in Chapter 5. It is also important to stress the optimality properties of those methods in Chapter 6 and the fact that these follow immediately from the properties

of projectors seen in Section 1.12. Chapter 6 is rather long and the instructor will need to select what to cover among the nonessential topics as well as choose topics for reading.

When covering the algorithms in Chapter 7, it is crucial to point out the main differences between them and those seen in Chapter 6. The variants such as conjugate gradient squared (CGS), biconjugate gradient stabilized (BICGSTAB), and transpose-free quasiminimal residual (TFQMR) can be covered in a short time, omitting details of the algebraic derivations or covering only one of the three. The class of methods based on the normal equations approach, i.e., Chapter 8, can be skipped in a math-oriented course, especially in the case of a quarter session. For a semester course, selected topics may be Sections 8.1, 8.2, and 8.4.

Preconditioning is known as the determining ingredient in the success of iterative methods in solving real-life problems. Therefore, at least some parts of Chapters 9 and 10 should be covered. Sections 9.2 and (very briefly) 9.3 are recommended. From Chapter 10, discuss the basic ideas in Sections 10.1 through 10.3. The rest could be skipped in a quarter course.

Chapter 11 may be useful to present to computer science majors, but may be skimmed through or skipped in a mathematics or an engineering course. Parts of Chapter 12 could be taught primarily to make the students aware of the importance of alternative preconditioners. Suggested selections are Sections 12.2, 12.4, and 12.7.2 (for engineers).

Chapters 13 and 14 present important research areas and are primarily geared toward mathematics majors. Computer scientists or engineers may cover this material in less detail.

To make these suggestions more specific, the following two tables are offered as sample course outlines. Numbers refer to sections in the text. A semester course represents approximately 30 lectures of 75 minutes each whereas a quarter course is approximately 20 lectures of 75 minutes each. Different topics are selected for a mathematics course and a nonmathematics course.

	Semester Course		
Weeks	Mathematics	Computer Science/Eng.	
	1.9–1.13	1.1-1.6 (Read); 1.7; 1.9;	
1–3	2.1–2.5	1.11; 1.12; 2.1–2.2	
·	3.1–3.3	3.1–3.6	
	4.1–4.2	4.1–4.2.1; 4.2.3	
46	5. 1–5.3; 6.1–6.4	5.1–5.2.1; 5.3	
·	6.5.1; 6.5.3–6.5.9	6.1-6.4; 6.5.1-6.5.5	
	6.6–6.8	6.7.1; 6.8–6.9	
7–9	6.9–6.11; 7.1–7.3	6.11.3; 7.1–7.3	
	7.4.1; 7.4.2; 7.4.3 (Read)	7.4.1–7.4.2; 7.4.3 (Read)	
	8.1; 8.2; 9.1–9.4	8.1–8.3; 9.1–9.3	
10–12	10.1–10.3; 10.4.1	10.1–10.3; 10.4.1–10.4.3	
	10.5.1–10.5.7	10.5.1–10.5.4; 10.5.7	
	12.2–12.4	11.1-11.4 (Read); 11.5-11.6	
13–15	13.1–13.5	12.1–12.2; 12.4–12.7	
	14.1–14.6	14.1–14.3; 14.6	

	Quarter Course			
Weeks	Mathematics	Computer Science/Eng.		
1–2	1.9-1.13	1.1-1.6 (Read); 3.1-3.5		
	4.1–4.2; 5.1–5.4	4.1; 1.12 (Read)		
3–4	6.1–6.4	5.1-5.2.1; 5.3		
	6.5.1; 6.5.3–6.5.5	6.1–6.3		
5–6	6.7.1; 6.11.3; 7.1–7.3	6.4; 6.5.1; 6.5.3–6.5.5		
	7.4.1–7.4.2; 7.4.3 (Read)	6.7.1; 6.11.3; 7.1–7.3		
7–8	9.1–9.3	7.4.1-7.4.2 (Read); 9.1-9.3		
	10.1–10.3; 10.5.1; 10.5.7	10.1–10.3; 10.5.1; 10.5.7		
9–10	13.1–13.5	11.1-11.4 (Read); 11.5; 11.6		
	14.1–14.4	12.1–12.2; 12.4–12.7		

Preface to the First Edition

Iterative methods for solving general, large, sparse linear systems have been gaining popularity in many areas of scientific computing. Until recently, direct solution methods were often preferred over iterative methods in real applications because of their robustness and predictable behavior. However, a number of efficient iterative solvers were discovered and the increased need for solving very large linear systems triggered a noticeable and rapid shift toward iterative techniques in many applications.

This trend can be traced back to the 1960s and 1970s, when two important developments revolutionized solution methods for large linear systems. First was the realization that one can take advantage of *sparsity* to design special direct methods that can be quite economical. Initiated by electrical engineers, these *direct sparse solution methods* led to the development of reliable and efficient general-purpose direct solution software codes over the next three decades. Second was the emergence of preconditioned conjugate gradient—like methods for solving linear systems. It was found that the combination of preconditioning and Krylov subspace iterations could provide efficient and simple *general-purpose* procedures that could compete with direct solvers. Preconditioning involves exploiting ideas from sparse direct solvers. Gradually, iterative methods started to approach the quality of direct solvers. In earlier times, iterative methods were often special purpose in nature. They were developed with certain applications in mind and their efficiency relied on many problem-dependent parameters.

Now three-dimensional models are commonplace and iterative methods are almost mandatory. The memory and the computational requirements for solving three-dimensional partial differential equations, or two-dimensional ones involving many degrees of freedom per point, may seriously challenge the most efficient direct solvers available today. Also, iterative methods are gaining ground because they are easier to implement efficiently on high performance computers than direct methods.

My intention in writing this volume is to provide up-to-date coverage of iterative methods for solving large sparse linear systems. I focused the book on practical methods that work for general sparse matrices rather than for any specific class of problems. It is indeed becoming important to embrace applications not necessarily governed by partial differential equations, as these applications are on the rise. Apart from two recent volumes by Axelsson [14] and Hackbusch [163], few books on iterative methods have appeared since the excellent ones by Varga [292] and later Young [321]. Since then, researchers and practi-

tioners have achieved remarkable progress in the development and use of effective iterative methods. Unfortunately, fewer elegant results have been discovered since the 1950s and 1960s. The field has moved in other directions. Methods have gained not only in efficiency but also in robustness and in generality. The traditional techniques, which required rather complicated procedures to determine optimal acceleration parameters, have yielded to the parameter-free conjugate gradient class of methods.

The primary aim of this book is to describe some of the best techniques available today, from both preconditioners and accelerators. One of the secondary aims of the book is to provide a good mix of theory and practice. It also addresses some of the current research issues, such as parallel implementations and robust preconditioners. The emphasis is on Krylov subspace methods, currently the most practical and common group of techniques used in applications. Although there is a tutorial chapter that covers the discretization of partial differential equations, the book is not biased toward any specific application area. Instead, the matrices are assumed to be general sparse and possibly irregularly structured.

The book has been structured in four distinct parts. The first part, Chapters 1 to 4, presents the basic tools. The second part, Chapters 5 to 8, presents projection methods and Krylov subspace techniques. The third part, Chapters 9 and 10, discusses preconditioning. The fourth part, Chapters 11 to 13, discusses parallel implementations and parallel algorithms.

Acknowledgments

I am grateful to a number of colleagues who proofread or reviewed different versions of the manuscript. Among them are Randy Bramley (University of Indiana at Bloomington), Xiao-Chuan Cai (University of Colorado at Boulder), Tony Chan (University of California at Los Angeles), Jane Cullum (IBM, Yorktown Heights), Alan Edelman (Massachusetts Institute of Technology), Paul Fischer (Brown University), David Keyes (Old Dominion University), Beresford Parlett (University of California at Berkeley), and Shang-Hua Teng (University of Minnesota). Their numerous comments and corrections and their encouragement were a highly appreciated contribution. In particular, they helped improve the presentation considerably and prompted the addition of a number of topics missing from earlier versions.

This book evolved from several successive improvements of a set of lecture notes for the course "Iterative Methods for Linear Systems," which I taught at the University of Minnesota in the last few years. I apologize to those students who used the earlier errorladen and incomplete manuscripts. Their input and criticism contributed significantly to improving the manuscript. I also wish to thank those students at MIT (with Alan Edelman) and UCLA (with Tony Chan) who used this book in manuscript form and provided helpful feedback. My colleagues at the University of Minnesota, staff and faculty members, have helped in different ways. I wish to thank in particular Ahmed Sameh for his encouragement and for fostering a productive environment in the department. Finally, I am grateful to the National Science Foundation for its continued financial support of my research, part of which is represented in this work.

Contents

Pre	face to t	the First l	Edition xvi			
1	Background in Linear Algebra					
	1.1	Matrice	es			
	1.2	Square	Matrices and Eigenvalues			
	1.3	Types of	of Matrices			
	1.4	Vector 1	Inner Products and Norms			
	1.5	Matrix	Norms			
	1.6	Subspa	ces, Range, and Kernel			
	1.7	Orthogo	onal Vectors and Subspaces			
	1.8	Canonio	cal Forms of Matrices			
		1.8.1	Reduction to the Diagonal Form			
		1.8.2	The Jordan Canonical Form			
		1.8.3	The Schur Canonical Form 16			
		1.8.4	Application to Powers of Matrices			
	1.9	Normal	and Hermitian Matrices			
		1.9.1	Normal Matrices			
		1.9.2	Hermitian Matrices			
	1.10	Nonneg	sative Matrices, M-Matrices			
	1.11	Positive	Definite Matrices			
	1.12	Projecti	on Operators			
		1.12.1	Range and Null Space of a Projector			
		1.12.2	Matrix Representations			
		1.12.3	Orthogonal and Oblique Projectors			
		1.12.4	Properties of Orthogonal Projectors			
	1.13	Basic C	oncepts in Linear Systems			
		1.13.1	Existence of a Solution			
		1.13.2	Perturbation Analysis			
	Exerci	ises				
	Notes	and Refer	rences'			

2	Discr	etization	of Partial Differential Equations	45		
	2.1	Partial :	Differential Equations			
		2.1.1	Elliptic Operators			
		2.1.2	The Convection Diffusion Equation			
	2.2	Finite I	Difference Methods			
		2.2.1	Basic Approximations	. 48		
		2.2.2	Difference Schemes for the Laplacian Operator	. 50		
		2.2.3	Finite Differences for One-Dimensional Problems			
		2.2.4	Upwind Schemes			
		2.2.5	Finite Differences for Two-Dimensional Problems			
		2.2.6	Fast Poisson Solvers	. 55		
	2.3	The Fir	nite Element Method	. 60		
	2.4	Mesh C	Generation and Refinement	. 66		
	2.5	Finite V	Volume Method	. 68		
	Exerc	ises		. 71		
	Notes	and Refe	rences	. 72		
3	Spar	se Matrico	es	73		
	3.1	Introdu	ction			
	3.2	Graph l	Representations	. 75		
		3.2.1	Graphs and Adjacency Graphs	. 75		
		3.2.2	Graphs of PDE Matrices	. 76		
	3.3	Permut	ations and Reorderings	. 77		
		3.3.1	Basic Concepts	. 77		
		3.3.2	Relations with the Adjacency Graph	. 79		
		3.3.3	Common Reorderings	. 81		
		3.3.4	Irreducibility	. 89		
	3.4	Storage	Schemes	. 89		
	3.5	Basic S	Sparse Matrix Operations	. 92		
	3.6	Sparse	Direct Solution Methods	. 93		
		3.6.1	MD Ordering	. 93		
		3.6.2	ND Ordering	. 94		
	3.7	Test Pro	oblems	. 94		
	Exerc	Exercises				
	Notes	and Refe	rences	. 101		
4	Basic	: Iterative	Methods	103		
	4.1	Jacobi,	Gauss-Seidel, and Successive Overrelaxation	. 103		
		4.1.1	Block Relaxation Schemes	. 106		
		4.1.2	Iteration Matrices and Preconditioning			
	4.2	Conver	gence	. 111		
		4.2.1	General Convergence Result	. 112		
		4.2.2	Regular Splittings			
		4.2.3	Diagonally Dominant Matrices			
		4.2.4	Symmetric Positive Definite Matrices			
		425	Property A and Consistent Orderings			

Contents

	4.3	Altern	ating Direction Methods	124
	Note	s and Refe	erences	128
5	Proje	ection Me	ethods	129
	5.1		Definitions and Algorithms	129
		5.1.1	General Projection Methods	
		5.1.2	Matrix Representation	
	5.2	Genera	al Theory	
		5.2.1	Two Optimality Results	
		5.2.2	Interpretation in Terms of Projectors	
		5.2.3	General Error Bound	
	5.3	One-D	imensional Projection Processes	
		5.3.1	Steepest Descent	
		5.3.2	MR Iteration	
		5.3.3	Residual Norm Steepest Descent	
	5.4	Additi	ve and Multiplicative Processes	
	Exer		· · · · · · · · · · · · · · · · · · ·	
	Note	s and Refe	erences	149
6	Krvl	ov Subsp	ace Methods, Part I	151
-	6.1	-	action	
	6.2		Subspaces	
	6.3	-	i's Method	
		6.3.1	The Basic Algorithm	
		6.3.2	Practical Implementations	
	6.4	Arnold	i's Method for Linear Systems	
		6.4.1	Variation 1: Restarted FOM	
		6.4.2	Variation 2: IOM and DIOM	
	6.5	Genera	lized Minimal Residual Method	
		6.5.1	The Basic GMRES Algorithm	
		6.5.2	The Householder Version	
		6.5.3	Practical Implementation Issues	
		6.5.4	Breakdown of GMRES	
		6.5.5	Variation 1: Restarting	
		6.5.6	Variation 2: Truncated GMRES Versions	
		6.5.7	Relations Between FOM and GMRES	
		6.5.8	Residual Smoothing	181
		6.5.9	GMRES for Complex Systems	
	6.6	The Sy	mmetric Lanczos Algorithm	
		6.6.1	The Algorithm	
		6.6.2	Relation to Orthogonal Polynomials	
	6.7	The Co	njugate Gradient Algorithm	
		6.7.1	Derivation and Theory	
		6.7.2	Alternative Formulations	
		6.7.3	Eigenvalue Estimates from the CG Coefficients	

	6.8	The Cor	njugate Residual Method	. 194		
	6.9		lized Conjugate Residual, ORTHOMIN, and ORTHODIR			
	6.10	The Fat	per-Manteuffel Theorem	. 196		
	6.11		gence Analysis			
		6.11.1	Real Chebyshev Polynomials	. 199		
		6.11.2	Complex Chebyshev Polynomials	. 200		
		6.11.3		. 203		
		6.11.4	Convergence of GMRES			
	6.12		Krylov Methods			
			rences			
7	Krylo	v Subspa	ce Methods, Part II	217		
	7.1	Lanczo	s Biorthogonalization	. 217		
		7.1.1	The Algorithm	. 217		
		7.1.2	Practical Implementations			
	7.2		nczos Algorithm for Linear Systems	. 221		
	7.3	The Bio	conjugate Gradient and Quasi-Minimal Residual Algorithms .	. 222		
	,,,,	7.3.1	The BCG Algorithm	. 222		
		7.3.2	QMR Algorithm			
	7.4		ose-Free Variants			
		7.4.1	CGS	. 229		
		7.4.2	BICGSTAB	. 231		
		7.4.3	TFQMR			
	Exerc					
			rences			
8	Meth	ods Relat	ed to the Normal Equations	245		
	8.1		rmal Equations	245		
	8.2	Row Pr	rojection Methods	247		
		8.2.1	Gauss-Seidel on the Normal Equations	247		
		8.2.2	Cimmino's Method	249		
	8.3	Conjug	ate Gradient and Normal Equations	251		
		8.3.1	CGNR	252		
		8.3.2	CGNE			
	8.4	Saddle-	Point Problems			
		Exercises				
	Notes	and Refe	rences	259		
9	Preco	nditioned	l Iterations	261 261		
	9.1					
	9.2					
		9.2.1	Preserving Symmetry	262		
		9.2.2	Efficient Implementations	265		

	9.3	Precond	litioned Generalized Minimal Residual	267
		9.3.1	Left-Preconditioned GMRES	
		9.3.2	Right-Preconditioned GMRES	269
		9.3.3	Split Preconditioning	
		9.3.4	Comparison of Right and Left Preconditioning	
	9.4	Flexible	e Variants	
		9.4.1	FGMRES	
		9.4.2	DQGMRES	
	9.5		litioned Conjugate Gradient for the Normal Equations	
	9.6		ncus, Golub, and Widlund Algorithm	
	Notes	and Refer	rences	280
10	Preco	nditionin	g Techniques	283
	10.1	Introduc	ction	283
	10.2		Successive Overrelaxation, and Symmetric Successive	
			axation Preconditioners	
	10.3	Incomp	lete LU Factorization Preconditioners	
		10.3.1	ILU Factorizations	
		10.3.2	Zero Fill-in ILU (ILU(0))	
		10.3.3	Level of Fill and $ILU(p)$	
		10.3.4	Matrices with Regular Structure	
		10.3.5	MILU	
	10.4	Thresho	old Strategies and Incomplete LU with Threshold	
		10.4.1	The ILUT Approach	
		10.4.2	Analysis	
		10.4.3	Implementation Details	
		10.4.4	The ILUTP Approach	
		10.4.5	The ILUS Approach	
		10.4.6	The ILUC Approach	
	10.5	Approxi	imate Inverse Preconditioners	
		10.5.1	Approximating the Inverse of a Sparse Matrix	
		10.5.2	Global Iteration	
		10.5.3	Column-Oriented Algorithms	
		10.5.4	Theoretical Considerations	
		10.5.5	Convergence of Self-Preconditioned MR	
		10.5.6	AINVs via Bordering	
		10.5.7	Factored Inverses via Orthogonalization: AINV	
		10.5.8	Improving a Preconditioner	
	10.6		ring for Incomplete LU	
		10.6.1	Symmetric Permutations	
		10.6.2	Nonsymmetric Reorderings	
	10.7		Preconditioners	
		10.7.1	Block Tridiagonal Matrices	
		10.7.2	General Matrices	330

Contents

	10.8	Precond	ditioners for the Normal Equations	
		10.8.1	Jacobi, SOR, and Variants	340
		10.8.2	IC(0) for the Normal Equations	340
		10.8.3	Incomplete Gram-Schmidt and ILQ	342
	Exerc	ises		345
	Notes	and Refe	rences	349
11	Paral	lel Implei	mentations	353
	11.1	Introdu	ction	353
	11.2	Forms of	of Parallelism	354
		11.2.1	Multiple Functional Units	354
		11.2.2	Pipelining	354
		11.2.3	Vector Processors	355
		11.2.4	Multiprocessing and Distributed Computing	355
	11.3	Types o	f Parallel Architectures	
		11.3.1	Shared Memory Computers	
		11.3.2	Distributed Memory Architectures	357
	11.4	Types o	f Operations	
	11.5		by-Vector Products	
		11.5.1	The CSR and CSC Formats	362
		11.5.2	Matvecs in the Diagonal Format	
		11.5.3	The Ellpack-Itpack Format	
		11.5.4	The JAD Format	
		11.5.5	The Case of Distributed Sparse Matrices	
	11.6	Standar	d Preconditioning Operations	
		11.6.1	Parallelism in Forward Sweeps	
		11.6.2	Level Scheduling: The Case of Five-Point Matrices	
		11.6.3	Level Scheduling for Irregular Graphs	
	Exerci	ises		
			rences	
12	Parall	lel Precon	ditioners	377
	12.1	Introduc	ction	377
	12.2		acobi Preconditioners	
	12.3		nial Preconditioners	
		12.3.1	Neumann Polynomials	
		12.3.2	Chebyshev Polynomials	
		12.3.3	Least-Squares Polynomials	
		12.3.4	The Nonsymmetric Case	
	12.4	Multico	•	
		12.4.1	Red-Black Ordering	
		12.4.2	Solution of Red-Black Systems	
•		12.4.3	Multicoloring for General Sparse Matrices	
	12.5		limination Incomplete LU	
	1	12.5.1	Multi-Elimination	
		12.5.1	II.IIM	394

	12.6	Distributed Incomplete LU and Symmetric Successive	
		Overrelaxation	
	12.7	Other Techniques	
		12.7.1 AINVs	
		12.7.2 EBE Techniques	399
		12.7.3 Parallel Row Projection Preconditioners	401
	Exerc	ises	402
	Notes	and References	404
13	Multi	grid Methods	407
	13.1	Introduction	
	13.2	Matrices and Spectra of Model Problems	408
		13.2.1 The Richardson Iteration	412
		13.2.2 Weighted Jacobi Iteration	414
		13.2.3 Gauss-Seidel Iteration	
	13.3	Intergrid Operations	419
		13.3.1 Prolongation	
		13.3.2 Restriction	
	13.4	Standard Multigrid Techniques	
		13.4.1 Coarse Problems and Smoothers	
		13.4.2 Two-Grid Cycles	
		13.4.3 V-Cycles and W-Cycles	
		13.4.4 FMG	
	13.5	Analysis of the Two-Grid Cycle	
		13.5.1 Two Important Subspaces	
		13.5.2 Convergence Analysis	
	13.6	Algebraic Multigrid	
	70.0	13.6.1 Smoothness in AMG	
		13.6.2 Interpolation in AMG	
		13.6.3 Defining Coarse Spaces in AMG	
		13.6.4 AMG via Multilevel ILU	
	13.7	Multigrid versus Krylov Methods	
		ises	
		and References	
14	Doma	in Decomposition Methods	451
		Introduction	451
		14.1.1 Notation	452
		14.1.2 Types of Partitionings	
		14.1.3 Types of Techniques	
	14.2	Direct Solution and the Schur Complement	
	1	14.2.1 Block Gaussian Elimination	
		14.2.2 Properties of the Schur Complement	
		14.2.3 Schur Complement for Vertex-Based Partitionings	
		14.2.4 Schur Complement for Finite Element Partitionings	
		14.2.5 Schur Complement for the Model Problem	
		17.2.5 Senai Comptoment to the Model Hotelin	.55

	14.3	Schwarz	z Alternating Procedures	465
	11.5	14.3.1	Multiplicative Schwarz Procedure	
		14.3.2	Multiplicative Schwarz Preconditioning	
		14.3.3	Additive Schwarz Procedure	
		14.3.4	Convergence	
	14.4	Schur C	Complement Approaches	
		14.4.1	Induced Preconditioners	
		14.4.2	Probing	480
		14.4.3	Preconditioning Vertex-Based Schur Complements	480
	14.5	Full Ma	trix Methods	481
	14.6	Graph P	Partitioning	483
		14.6.1	Basic Definitions	
		14.6.2	Geometric Approach	
		14.6.3	Spectral Techniques	486
		14.6.4	Graph Theory Techniques	
	Exerci	ises		
	Notes	and Refer	ences	492
Bibli	ograph	ıy		495
Inde	x			517