PEARSON

LSHE

@000 6

Aﬂﬁﬁﬁmg%

Randal E. Bryant David R. OHaIIaron%
FHRE-15EXF

HZ BOOKS |

i COMPUTER SYSTEMS
& A Programmer’s Perspective
2
&

Mo I W kA
China Machine Prels Brya nt ° O’Ha”arOn



iﬁ*c)\@%fﬁﬂlﬁ 5

( ZESTHR - 552K )

%ﬁ?/ié&fé/ %ﬂ/eﬁw

A Programmer’ s Perspective (second Edition)

Randal E. Bryant
( 2 ) David R. O'Hallaron

FHE-BEXE

@mmlﬂkfhlﬁ&




English reprint edition copyright © 2011 by Pearson Education Asia Limited and China Machine Press.

Original English language title: Computer Systems: A Programmer’s Perspective, Second Edition (ISBN
978-0-13-713336-9) by Randal E. Bryant and David R. O’Hallaron, Copyright © 2011, 2003.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macau SAR).

AP FCFZENRR i Pearson Education Asia Ltd. #2#UHLAR Tolk AR R AR, R HIRE B w4,
AR LME 5 A s EZABAE.

PR TFrp e NRILFIESEN (ANREREEFE. BIIRITEREMEESHX ) #EE17.

A A5 1E G4 Pearson Education (354 H HARER ) BOEPithtns, KARZEEFGHE.

HERF B AR A HERR
WRIFRE, @ALR
FHEEME AR TRARINE S

A BEWEIES : B=F : 01-2010-6351
EHBER%E (CIP) iR

WA EYLAES (AR - 2 h)/(3£) fi%k B4 (Bryant, R.E.), (3£) ®ahifg (O’Hallaron,
D.R.) 2. —t3 : HL Tk tHAR#E, 2011.1

(2 HFRRASFE)

54 JH3C . Computer Systems: A Programmer’s Perspective, Second Edition

ISBN 978-7-111-32631-1
LE- IL O @K ILiEHLRES V. TP30
[ i A B 51 CIP #iE5 (2010) %5 230916 5

LB Tl AR A GEsmrdisx | 5 FEAH 22 2 WBEC%ES  100037)
TS . EFEE

AL EN 45 A BR 2 S1EN R

2011 4 1 A% 1 B 1 ZRENRI

186mm x 240mm -« 67.5 E[lk

FrifEF52 : ISBN 978-7-111-32631-1

EM : 128.00 75

JUgAAS, anfaekol. B, BT, B & iTiiEn
EARLL . (010) 88378991, 88361066

WPhek . (010) 68326294, 88379649, 68995259
Fefahek. (010) 88379604

EFEH : hzjsi@hzbook.com



EIREONE

XEE DR, BRI K AFHARE R SR E ARG, (775 E R 3 RPEN &
SUREE T WS s hIERXFERES, EXEERBHERE RN T2 ER AR,
FhATAGE, FERDILIERBERE R, KRR SHE LR EE LA, HRILFRHNTFL
WAL} R S AP RS AR BT £k, i = A 2 B35 1E, A OUBERI T HF R TEWS
MR THFARMIERE, BREFEFANE, XEAFEME, KM EHASEE ARG SR .

LA, E2EKME BRI T, REMTEI LR ERE, & AABFTFRKH &
Y], XA EYEE R AR SIS, hEME i % L EM R IXERE &g LT
MR RE, ARERGEEERKREMNBREHIRT, EEFREERELTHEIE# R R
JLHFRIBREME RSB BM AT ZEREEZL. B, SIHE—#EIMLFE HRILBH
Pt E T RVLEE S R RERI RS EN, SRR, BIRE EMHR R
KRS 2,

LB Tolk H it e 7 4 R R INE “HREABEFERS . B 1998 774G, AT T
VEE SAE Tk, BiIFEIMEE ZEAM L. @ L ERNARSE 51, 15 Pearson, McGraw-
Hill, Elsevier, MIT, John Wiley & Sons, Cengage Zitt {36 & HIRA BT T RIS EX
Z, MH1BL A 195 E Fh Z 44 o B % H Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W.
Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,
Abraham Silberschatz, William Stallings, Donald E. Knuth, John L. Hennessy, Larry L.
Peterson 5§ KU &4 KA — L MAE R, DL “THRVFHENE” AHEFRER, #Hi%E¥E2]. R
B2k, KREASPERE T, WIEAB T XN,

“URALBHENE R TGS TENIM AR DR, BNNERA R T
HIERITR S, BAFE T AR T BIERA S B TAE A BHEE Y X EHELRETE
HIeHE, AMEERARBHIFELRERF, €4, “HEILBEAE E2WHR TEMRE
P, XERBAEREPRLT REFMVOE, HEF2ERRAMEXRZEHMSEHE, HLEH
W “LMJFERRASEET VR b ik R Bk ek 2 KRB B F AT R A .

PUBHITERS . MAVEM . —RIVEE . MRS, BANEE, XSREFERMVE
BATREMRIE, BEEHREILEY SR B B &AW 52 35 8k SO &R B,
FH Fxt E M EALBA TR AR R A — A FH B, RO EARERERE, MK
IR W ER AR B X — Ak B bR EERGB) . 1L B8 28 RIUGH I Fisk 2 % A1 T VR4 H
HALSEA THRIE, ROTBERGZHENT -

EEREL . www.hzbook.com

B FBE 14 . hzjsj@hzbook.com

EEZEIE . (010) 88379604

BRI A THREETAHE 1S
Wi » 100029 BEREE S d o




i = 1 3 | Computer Systems
l Hu = _I—J A Programmer’s Perspective. 2E

AR EBELERITFIRER. TR TRM, PARIREREE DS B RENNTEE
Ve RERS S HH BB AR P O

AT B B R EREETA B RGWA TR, FH 1 U R X LA 2 40 o] S5 SE7E 7 3 52 i)
RFARFRESYE. MRS AR . R RERBERMR AN LA 6 A BREH), PR
LHABHHRRAGRM, BFRRIERE. WIFHSMNEED. MABRMALA R 698 LKREH,
YRR N AR F AT RES AR RER PR S HEHFHRF . 4R, FI—MTREILRGE N ZK
Sttt 2, R MM E—NHEREN R H R, FTeA, TR Baksy ) RGP
LI AKBE, ABMR—ARAMER T HNEEED)

FHiE

A4l 12 BHM, SEEBTREILRENEOME.

cF1F A EMALRF. X—FEIHI “hello, world” XA ERRFHI A ar A, /T4
AN RS FEZM S L

cF 2% B EMHATALE, BRIV THAENKAEARZRE, EAMRT SWERF RAEIH
1 TCATS BN B — 2 %MD (two’s complement) R HIFFYE. FATH BECF R UTERIR
19, AR BHEXT T —MMRER TR, KA EATERE . FATHEZMAIRRET,
AR R e 45 78 Y F K BE AR S O BUERVTE . FRATHOT A R ST S 80T Z R R FE Y
BOR, EEBAEARZEHEERE. XSEEF ASFE RS TR O ZHHMEER
B WA EBMAECERATRE . 55— H, BEHIRMD AR S B R B,
P, St ol AR 22 e — N B IRIR AL N — RIS AL . FATH CiEF L
FARAER UL R AR SRBE A . AT T T ik T IEEE PRfERI P s . —2
WA ERF R, —REFREFRHFEE.

cF3F AAONBSLAT . WINEEEFE MM FIBEH C FiiFat2E AU TA32 I x86-64 %1%
Fo BATRBIAARRERIGEH, Ik iE. \FAJF X8R, ERMEAHELSEK. RiTE
WA HAT, BFERSE. FIAaERREMNSHEE. RITHEAFREBELENE (g
#y. BKA Cunion) FELAD) B94-BCAITT ) 7. FATIE AT AR PR AEDLER RO RE 1 Ry i
e, REEMFH AR Z2W, P, ZrhXEi, ARBERRF . SidsifaiE RS
AT DASR BB Yo A 1 ol ot P 81 -

cFAF REBKRALH. X—BEHREANAAGHNFEERTE, HERXETERNAE
RARiE R (datapath) HPAGE|—ERINFT A2 F5L L — PR “Y86” HIMILTHE. &



i

BMETE - 5
25 rh b PR BRI T Y45 B R — R AR HCL A fe A (Rl 1 5 Ok ilid ey HCL 5
F B (15 Rl % g i A B B A PR AL AR b, 3B W] DARR HE X SE 8 1 A2 A Verilog i
R, EIESEGH (synthesis) F|SCPRA] PAEFTROREMF B2

cHSEFE: AEAKRE. AX—ER, RINFTHSREERBEREHEAR, FEREHR
AR 5O (R A RE S A AU A R HLER RIS R R E C g

« $ 6% BB EKEH. MNABRT K, FESAZEITEIARG P RERE LK
Wz —. BOFERFERBHBEYIFIAFF#EE (RAM) fIHEFMEF (ROMD, PARREE
TN FESRE A LR S . FRAT AR X LAl 1 A 2 QT i B 7R R IR G5 ),
PFIAR T ) JR ER 1 A2 0] (X b 2 R G54 AR RT BB A . FRATTE A — N R A U AR X LU R
Hiktk. 51k, R FESRRGEM A —A “FFagasl”, 1LE2EERHME, MR
AR, Ba, FRAT e R AR e 3 A v R A R TR) S S N A3 [ JR A R B
T N AR P T

« 7% B4, AEIRAESESER, OROMESA T EENM (relocatable) FIR[ AT
I EARSCHE . FFSffMT. EENL (relocation). #ASEE. HEHARE, ARSHIEILXHA.
« 8% FWAEFIA. EAPBHXANES, RITALNERHEESW (o, BRTIEHESX
FI AR E I AR IR AL B— S, FTR R —RBF . RINAHFET RS
i ZRREER RO, WKZENEEREMBE, 30FR#RM E T30k, Fh
F Unix {55455 RAEHMELE, 3| CiES PRI RIENAIEA B (nonlocal jump).
cF 9% RAME. RINVRR I EEE R R A EEE X E = A TAER DA E 1 FF
WA T . RAVELLEE TR 2R KRS B #AE — 22 E R HaEE R,
BEIL RSO, i Pk B A — 2T FRATIETE B UF T — Lo B B AR R UL 2 Y )
Feal, WAVHE THEDBCERIE, BUE Unix Y malloc Ml free #:fE.

« £ 10%F : AAA VO, FATYHA Unix VO EAMES, BIA0SCAFFRRF. FRATHE A Qe
=M, VO EE A TAER), A G A SO e . JOTEH & 7 — Mt
HHF R X VO 4, W] PAIEBRALIE—FhFRA short counts F&FRFFT A, L2 FE R ¥ H 132
B—#4 i ASE . AR C MFRME VO FE, PARE S Unix /O X 5K, F|ARIIR
HE 1O R R, X 2R BRYEME 2 AT & W 45 e

cF 1 F . RgRAZ. MEREMS, MERIEEAEBRY VO &%, RF2RATH0H 23]
HAE A, iR, (58, F1F (byte order). %S FIZNSTEAERLNL, BEEE
—iE. MEBRFENT—EMET—HFK, BETARLSAGRIYLETX. AFRR
W 28 G AR — MR/ DR, HEEE B RS — > Web IR 25, RATIE AR T AT Fra M
HBREFIRZERNE PG - RS RAOVBIH T — 2T 55T Internet W05, F HEEH
W] B4 (socket) $210K 4w Internet X P i fl RS 78 5, AT AL H
i HTTP, HH A T — M RIHEAERL (iterative) Web R85 .

* F12%: FA%BAE. X—FDA Internet fRFFF BT HBNA T H EHmE. RITLBRITRET
=G H KRR EANLE (R, VO ZHEAEARMERE), HHBR/RWMAHEi%
% - % Internet IR %588 FATIRIT TH Py VIS EHIERIHMFE . SRRSO EA




6 -

i3

Wik

(reentrancy). &5 AMFPARFEBISFMEARFN . HATEVHR T KBERMERERTTE, K
FRRER AT HRIFATHE, (R ES B RS EREPITRER.

FEFTIEAE

ABHIEE 1T 2003 FEH R HEBEITFEVEAR L RBMIERE, XA HEREZRE
B, FSCFRH Intel x86 FIHLEE FiZ4T2 Unix #/ER S, M ERA CiES L, B—MEE
M LS FEZRENAEG . BHRAMGIFEROEL, AERREBITBERXLNENZE, EHE
BERAMB T KEM B

T EF R — T AN Y Rt

cF2F: FENMATAAE. B EMFMMBEREAREZWSGFIBMEEEL, K

HAE X NEEMSE. O R REIC RS TREFER. SR

Tl T EVIEARZE R R 22T .

CFIFAFONBEAT. RIFAFTVERZEEY R T H4E x86-64, L2 HF x86

AEFRY RE T 64 . MR THEIIRAN GCC =AM RIE. 5 IMNENR T X4 oh

X i U R R . FEM SR, RATAHE THEAFMNE SIS, BNE T 4%5miFH

B S F R EHE, B — SRR, HAh, EBF — ARG T

E—N CIEEEFPHRA x86 LA

cF AT REBKALH. FEHFEMMUH TRINOOHESZ TP RE LML, &

WLk EHE R, FATME H TABEEF TR Verilog #ARBLSY, @5RATARITRER SRR AT

BITHIREME L.

cFS5F: MAEAMR, RIBAHEA T ELF AT MALETRHE, B8EE T —/

IR AR, R E T 7R R ERR PR BEERSTRF M. EMgSHTE,

AR T CIiBEFFEF R Ae] GB 4% A F B BTG x86 AbFEZR R {LAY SIMD (BEIE40R, LR

i) B KHmE.

cFOF : AMBEKXEMN., RAENTESHERLMALE, BEHTRIWERR, FZET

Intel Core i7 AL FEBFHIFF & 2R IR G5

cFTF BB, AENTLAK.

* F8F : RFFAAIA. AT T X FHEER M 5] A —ERKHEMEHIHE, B

WEER E 1.

cFOF: EMAMSE. RINEH THMSBRARFITR, RA T 64 {i Intel Core i7 AL F 3}

FBIRHIR . FRATEEF T malloc REI/RABILEL, 62 BERETE 32 (7 W REXE 64 1355

AT .

% 10%F : ARHBO., KEHBIUAK.

cF 11 % RgHAL. AENBLRK.

« B 12F: FABAZ. BRI T XFHEEREUHANZE, DR T B R e F) 2

BRI ITHEERREFESZILS s Es.

AL, FATEIEMAME R TR L 4> A K EVE .



Computer Systems
A Programmer’s Perspective, 2E

This book (CS:APP) is for computer scientists, computer engineers, and others
who want to be able to write better programs by learning what is going on “under
the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and to show you the concrete ways that these ideas affect the correctness, perfor-
mance, and utility of your application programs. Other systems books are written
from a builder’s perspective, describing how to implement the hardware or the sys-
tems software, including the operating system, compiler, and network interface.
This book is written from a programmer’s perspective, describing how application
programmers can use their knowledge of a system to write better programs. Of
course, learning what a system is supposed to do provides a good first step in learn-
ing how to build one, and so this book also serves as a valuable introduction to
those who go on to implement systems hardware and software.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare “power programmer” who knows how things work and how
to fix them when they break. Our aim is to present the fundamental concepts in
ways that you will find useful right away. You will also be prepared to delve deeper,
studying such topics as compilers, computer architecture, operating systems, em-
bedded systems, and networking.

Assumptions about the Reader’s Background

The presentation of machine code in the book is based on two related formats
supported by Intel and its competitors, colloquially known as “x86.” IA32 is the
machine code that has become the de facto standard for a wide range of systems.
x86-64 is an extension of IA32 to enable programs to operate on larger data and to
reference a wider range of memory addresses. Since x86-64 systems are able to run
IA32 code, both of these forms of machine code will see widespread use for the
foreseeable future. We consider how these machines execute C programs on Unix
or Unix-like (such as Linux) operating systems. (To simplify our presentation,
we will use the term “Unix” as an umbrella term for systems having Unix as
their heritage, including Solaris, Mac OS, and Linux.) The text contains numerous
programming examples that have been compiled and run on Linux systems. We
assume that you have access to such a machine and are able to log in and do simple
things such as changing directories.

If your computer runs Microsoft Windows, you have two choices. First, you
can get a copy of Linux (www.ubuntu. com) and install it as a “dual boot” option,
so that your machine can run either operating system. Alternatively, by installing
a copy of the Cygwin tools (www. cygwin.com), you can run a Unix-like shell under

| Preface |



8 -

Preface

Windows and have an environment very close to that provided by Linux. Not all
features of Linux are available under Cygwin, however.

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [58]. Regardless of your programming
background, consider K&R an essential part of your personal systems library.

Several of the early chapters in the book explore the interactions between
C programs and their machine-language counterparts. The machine-language
examples were all generated by the GNU Gcce compiler running on IA32 and x86-
64 processors. We do not assume any prior experience with hardware, machine
language, or assembly-language programming.

New to C? Advice on the C programming language

To help readers whose background in C programming is weak (or nonexistent), we have also included
these special notes to highlight features that are especially important in C. We assume you are familiar
with C++ or Java.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn something new,
you can try it out right away and see the result first hand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work
immediately to test your understanding. Solutions to the practice problems are
at the end of each chapter. As you read, try to solve each problem on your own,
and then check the solution to make sure you are on the right track. Each chapter
is followed by a set of homework problems of varying difficulty. Your instructor
has the solutions to the homework problems in an Instructor’s Manual. For each
homework problem, we show a rating of the amount of effort we feel it will require:

@ Should require just a few minutes. Little or no programming required.

€@ Might require up to 20 minutes. Often involves writing and testing some code.
Many of these are derived from problems we have given on exams.

€®e¢ Requires a significant effort, perhaps 1-2 hours. Generally involves writing
and testing a significant amount of code.

®49¢ A lab assignment, requiring up to 10 hours of effort.



code/intro/hello.c
1 #include <stdio.h>
2
3 int main()
4 A
5 printf ("hello, world\n");
6 return O;
.
code/intro/hello.c

Figure 1 A typical code example.

Each code example in the text was formatted directly, without any manual
intervention, from a C program compiled with Gce and tested on a Linux system.
Of course, your system may have a different version of Gcc, or a different compiler
altogether, and so your compiler might generate different machine code, but the
overall behavior should be the same. All of the source code is available from the
CS:APP Web page at csapp. cs.cmu. edu. In the text, the file names of the source
programs are documented in horizontal bars that surround the formatted code.
For example, the program in Figure 1 can be found in the file hello. c in directory
code/intro/. We encourage you to try running the example programs on your
system as you encounter them.

To avoid having a book that is overwhelming, both in bulk and in content,
we have created a number of Web asides containing material that supplements
the main presentation of the book. These asides are referenced within the book
with a notation of the form CHAP:TOP, where CHAP is a short encoding of the
chapter subject, and TOP is short code for the topic that is covered. For example,
Web Aside DATA:BOOL contains supplementary material on Boolean algebra for
the presentation on data representations in Chapter 2, while Web Aside ARCH:VLOG
contains material describing processor designs using the Verilog hardware descrip-
tion language, supplementing the presentation of processor design in Chapter 4.
All of these Web asides are available from the CS:APP Web page.

Aside What is an aside?

Preface - 9

You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give
you some additional insight into the current topic. Asides serve a number of purposes. Some are little
history lessons. For example, where did C, Linux, and the Internet come from? Other asides are meant
to clarify ideas that students often find confusing. For example, what is the difference between a cache
line, set, and block? Other asides give real-world examples. For example, how a floating-point error
crashed a French rocket, or what the geometry of an actual Seagate disk drive looks like. Finally, some

asides are just fun stuff. For example, what is a “hoinky”?



10 - Preface

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems:

® Chapter 1: A Tour of Computer Systems. This chapter introduces the major
ideas and themes in computer systems by tracing the life cycle of a simple
“hello, world” program.

® Chapter 2: Representing and Manipulating Information. We cover computer
arithmetic, emphasizing the properties of unsigned and two’s-complement
number representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for a given
word size. We consider the effect of casting between signed and unsigned num-
bers. We cover the mathematical properties of arithmetic operations. Novice
programmers are often surprised to learn that the (two’s-complement) sum
or product of two positive numbers can be negative. On the other hand, two’s-
complement arithmetic satisfies the algebraic properties of a ring, and hence a
compiler can safely transform multiplication by a constant into a sequence of
shifts and adds. We use the bit-level operations of C to demonstrate the prin-
ciples and applications of Boolean algebra. We cover the IEEE floating-point
format in terms of how it represents values and the mathematical properties
of floating-point operations.

Having a solid understanding of computer arithmetic is critical to writing
reliable programs. For example, programmers and compilers cannot replace
the expression (x<y) with (x-y < 0), due to the possibility of overflow. They
cannot even replace it with the expression (-y < -x), due to the asymmetric
range of negative and positive numbers in the two’s-complement represen-
tation. Arithmetic overflow is a common source of programming errors and
security vulnerabilities, yet few other books cover the properties of computer
arithmetic from a programmer’s perspective.

® Chapter 3: Machine-Level Representation of Programs. We teach you how to
read the IA32 and x86-64 assembly language generated by a C compiler. We
cover the basic instruction patterns generated for different control constructs,
such as conditionals, loops, and switch statements. We cover the implemen-
tation of procedures, including stack allocation, register usage conventions,
and parameter passing. We cover the way different data structures such as
structures, unions, and arrays are allocated and accessed. We also use the
machine-level view of programs as a way to understand common code se-
curity vulnerabilities, such as buffer overflow, and steps that the programmer,
the compiler, and the operating system can take to mitigate these threats.
Learning the concepts in this chapter helps you become a better programmer,
because you will understand how programs are represented on a machine.
One certain benefit is that you will develop a thorough and concrete under-
standing of pointers.

Chapter 4: Processor Architecture. This chapter covers basic combinational
and sequential logic elements, and then shows how these elements can be



combined in a datapath that executes a simplified subset of the IA32 instruc-
tion set called “Y86.” We begin with the design of a single-cycle datapath. This
design is conceptually very simple, but it would not be very fast. We then intro-
duce pipelining, where the different steps required to process an instruction
are implemented as separate stages. At any given time, each stage can work
on a different instruction. Our five-stage processor pipeline is much more re-
alistic. The control logic for the processor designs is described using a simple
hardware description language called HCL. Hardware designs written in HCL
can be compiled and linked into simulators provided with the textbook, and
they can be used to generate Verilog descriptions suitable for synthesis into
working hardware.

Chapter 5: Optimizing Program Performance. This chapter introduces a num-
ber of techniques for improving code performance, with the idea being that
programmers learn to write their C code in such a way that a compiler can
then generate efficient machine code. We start with transformations that re-
duce the work to be done by a program and hence should be standard practice
when writing any program for any machine. We then progress to transforma-
tions that enhance the degree of instruction-level parallelism in the generated
machine code, thereby improving their performance on modern “superscalar”
processors. To motivate these transformations, we introduce a simple opera-
tional model of how modern out-of-order processors work, and show how to
measure the potential performance of a program in terms of the critical paths
through a graphical representation of a program. You will be surprised how
much you can speed up a program by simple transformations of the C code.

Chapter 6: The Memory Hierarchy. The memory system is one of the most visi-
ble parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array with
uniform access times. In practice, a memory system is a hierarchy of storage
devices with different capacities, costs, and access times. We cover the differ-
ent types of RAM and ROM memories and the geometry and organization of
magnetic-disk and solid-state drives. We describe how these storage devices
are arranged in a hierarchy. We show how this hierarchy is made possible by
locality of reference. We make these ideas concrete by introducing a unique
view of a memory system as a “memory mountain” with ridges of temporal
locality and slopes of spatial locality. Finally, we show you how to improve the
performance of application programs by improving their temporal and spatial
locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, in-
cluding the ideas of relocatable and executable object files, symbol resolution,
relocation, static libraries, shared object libraries, and position-independent
code. Linking is not covered in most systems texts, but we cover it for sev-
eral reasons. First, some of the most confusing errors that programmers can
encounter are related to glitches during linking, especially for large software
packages. Second, the object files produced by linkers are tied to concepts
such as loading, virtual memory, and memory mapping.

Preface

- 11



12 - Preface

e Chapter 8: Exceptional Control Flow. In this part of the presentation, we

step beyond the single-program model by introducing the general concept
of exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware
exceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the delivery of Unix signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea of
a process, an abstraction of an executing program. You will learn how pro-
cesses work and how they can be created and manipulated from application
programs. We show how application programmers can make use of multiple
processes via Unix system calls. When you finish this chapter, you will be able
to write a Unix shell with job control. It is also your first introduction to the
nondeterministic behavior that arises with concurrent program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system
seeks to give some understanding of how it works and its characteristics. We
want you to know how it is that the different simultaneous processes can each
use an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manipulating
virtual memory. In particular, we cover the operation of storage allocators
such as the Unix malloc and free operations. Covering this material serves
several purposes. It reinforces the concept that the virtual memory space is
just an array of bytes that the program can subdivide into different storage
units. It helps you understand the effects of programs containing memory ref-
erencing errors such as storage leaks and invalid pointer references. Finally,
many application programmers write their own storage allocators optimized
toward the needs and characteristics of the application. This chapter, more
than any other, demonstrates the benefit of covering both the hardware and
the software aspects of computer systems in a unified way. Traditional com-
puter architecture and operating systems texts present only part of the virtual
memory story.

Chapter 10: System-Level I/O. We cover the basic concepts of Unix I/O such
as files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered I/0
package that deals correctly with a curious behavior known as short counts,
where the library function reads only part of the input data. We cover the C
standard I/O library and its relationship to Unix I/O, focusing on limitations
of standard I/O that make it unsuitable for network programming. In general,
the topics covered in this chapter are building blocks for the next two chapters
on network and concurrent programming.

Chapter 11: Network Programming. Networks are interesting I/O devices to
program, tying together many of the ideas that we have studied earlier in the
text, such as processes, signals, byte ordering, memory mapping, and dynamic



storage allocation. Network programs also provide a compelling context for
concurrency, which is the topic of the next chapter. This chapter is a thin slice
through network programming that gets you to the point where you can write
a Web server. We cover the client-server model that underlies all network
applications. We present a programmer’s view of the Internet, and show how
to write Internet clients and servers using the sockets interface. Finally, we
introduce HTTP and develop a simple iterative Web server.

® Chapter 12: Concurrent Programming. This chapter introduces concurrent
programming using Internet server design as the running motivational ex-
ample. We compare and contrast the three basic mechanisms for writing con-
current programs—processes, I/O multiplexing, and threads—and show how
to use them to build concurrent Internet servers. We cover basic principles of
synchronization using P and V semaphore operations, thread safety and reen-
trancy, race conditions, and deadlocks. Writing concurrent code is essential
for most server applications. We also describe the use of thread-level pro-
gramming to express parallelism in an application program, enabling faster
execution on multi-core processors. Getting all of the cores working on a sin-
gle computational problem requires a careful coordination of the concurrent
threads, both for correctness and to achieve high performance.

New to this Edition

The first edition of this book was published with a copyright of 2003. Consider-

ing the rapid evolution of computer technology, the book content has held up

surprisingly well. Intel x86 machines running Unix-like operating systems and

programmed in C proved to be a combination that continues to encompass many

systems today. Changes in hardware technology and compilers and the experience

of many instructors teaching the material have prompted a substantial revision.
Here are some of the more significant changes:

® Chapter 2: Representing and Manipulating Information. We have tried to make
this material more accessible, with more careful explanations of concepts
and with many more practice and homework problems. We moved some of
the more theoretical aspects to Web asides. We also describe some of the
security vulnerabilities that arise due to the overflow properties of computer
arithmetic.

e Chapter 3: Machine-Level Representation of Programs. We have extended our
coverage to include x86-64, the extension of x86 processors to a 64-bit word
size. We also use the code generated by a more recent version of ccc. We have
enhanced our coverage of buffer overflow vulnerabilities. We have created
Web asides on two different classes of instructions for floating point, and
also a view of the more exotic transformations made when compilers attempt
higher degrees of optimization. Another Web aside describes how to embed
x86 assembly code within a C program.

Preface + 13



14 - Preface

o Chapter 4: Processor Architecture. We include a more careful exposition of
exception detection and handling in our processor design. We have also cre-
ated a Web aside showing a mapping of our processor designs into Verilog,
enabling synthesis into working hardware.

e Chapter 5: Optimizing Program Performance. We have greatly changed our
description of how an out-of-order processor operates, and we have created
a simple technique for analyzing program performance based on the paths
in a data-flow graph representation of a program. A Web aside describes
how C programmers can write programs that make use of the SIMD (single-
instruction, multiple-data) instructions found in more recent versions of x86
processors.

e Chapter 6: The Memory Hierarchy. We have added material on solid-state
disks, and we have updated our presentation to be based on the memory
hierarchy of an Intel Core i7 processor.

e Chapter 7: Linking. This chapter has changed only slightly.

e Chapter 8: Exceptional Control Flow. We have enhanced our discussion of
how the process model introduces some fundamental concepts of concurrency,
such as nondeterminism.

e Chapter 9: Virtual Memory. We have updated our memory system case study to
describe the 64-bit Intel Core i7 processor. We have also updated our sample
implementation of malloc to work for both 32-bit and 64-bit execution.

e Chapter 10: System-Level I/O. This chapter has changed only slightly.
e Chapter 11: Network Programming. This chapter has changed only slightly.

e Chapter 12: Concurrent Programming. We have increased our coverage of the
general principles of concurrency, and we also describe how programmers
can use thread-level parallelism to make programs run faster on multi-core
machines.

In addition, we have added and revised a number of practice and homework
problems.

Origins of the Book

The book stems from an introductory course that we developed at Carnegie Mel-
lon University in the Fall of 1998, called 15-213: Introduction to Computer Systems
(ICS) [14]. The ICS course has been taught every semester since then, each time to
about 150-250 students, ranging from sophomores to masters degree students and
with a wide variety of majors. It is a required course for all undergraduates in the
CS and ECE departments at Carnegie Mellon, and it has become a prerequisite
for most upper-level systems courses.

The idea with ICS was to introduce students to computers in a different way.
Few of our students would have the opportunity to build a computer system. On
the other hand, most students, including all computer scientists and computer
engineers, will be required to use and program computers on a daily basis. So we



decided to teach about systems from the point of view of the programmer, using
the following filter: we would cover a topic only if it affected the performance,
correctness, or utility of user-level C programs.

For example, topics such as hardware adder and bus designs were out. Topics
such as machine language were in, but instead of focusing on how to write assem-
bly language by hand, we would look at how a C compiler translates C constructs
into machine code, including pointers, loops, procedure calls, and switch state-
ments. Further, we would take a broader and more holistic view of the system
as both hardware and systems software, covering such topics as linking, loading,
processes, signals, performance optimization, virtual memory, I/O, and network
and concurrent programming.

This approach allowed us to teach the ICS course in a way that is practical,
concrete, hands-on, and exciting for the students. The response from our students
and faculty colleagues was immediate and overwhelmingly positive, and we real-
ized that others outside of CMU might benefit from using our approach. Hence
this book, which we developed from the ICS lecture notes, and which we have
now revised to reflect changes in technology and how computer systems are im-
plemented.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach five different kinds of systems
courses (Figure 2). The particular course depends on curriculum requirements,
personal taste, and the backgrounds and abilities of the students. From left to
right in the figure, the courses are characterized by an increasing emphasis on the
programmer’s perspective of a system. Here is a brief description:

¢ ORG: A computer organization course with traditional topics covered in an
untraditional style. Traditional topics such as logic design, processor architec-
ture, assembly language, and memory systems are covered. However, there is
more emphasis on the impact for the programmer. For example, data repre-
sentations are related back to the data types and operations of C programs,
and the presentation on assembly code is based on machine code generated
by a C compiler rather than hand-written assembly code.

e ORG+: The ORG course with additional emphasis on the impact of hardware
on the performance of application programs. Compared to ORG, students
learn more about code optimization and about improving the memory pet-
formance of their C programs.

e ICS: The baseline ICS course, designed to produce enlightened programmers
who understand the impact of the hardware, operating system, and compila-
tion system on the performance and correctness of their application programs.
A significant difference from ORG+ is that low-level processor architecture is
not covered. Instead, programmers work with a higher-level model of a mod-
ern out-of-order processor. The ICS course fits nicely into a 10-week quarter,
and can also be stretched to a 15-week semester if covered at a more leisurely
pace.

Preface - 15



16 - Preface

Course
Chapter Topic ORG ORG+ ICS ICS+ SP
1 Tour of systems ° o ° o o
2 Data representation o o ° ° oW
3 Machine language . o o . .
-+ Processor architecture o d
5 Code optimization ° . o
6 Memory hierarchy o®@ o o . o®@
7 Linking 0®© o© .
8 Exceptional control flow . ° °
9 Virtual memory o® o . o o
10 System-level I/O o o
11 Network programming o °
12 Concurrent programming o .

Figure 2 Five systems courses based on the CS:APP book. Notes: (a) Hardware only,
(b) No dynamic storage allocation, (c) No dynamic linking, (d) No floating point. ICS+
is the 15-213 course from Carnegie Mellon.

¢ ICS+: The baseline ICS course with additional coverage of systems program-
ming topics such as system-level I/O, network programming, and concurrent
programming. This is the semester-long Carnegie Mellon course, which covers
every chapter in CS:APP except low-level processor architecture.

® SP: A systems programming course. Similar to the ICS+ course, but drops
floating point and performance optimization, and places more emphasis on
systems programming, including process control, dynamic linking, system-
level I/O, network programming, and concurrent programming. Instructors
might want to supplement from other sources for advanced topics such as
daemons, terminal control, and Unix IPC.

The main message of Figure 2 is that the CS:APP book gives a lot of options
to students and instructors. If you want your students to be exposed to lower-
level processor architecture, then that option is available via the ORG and ORG+
courses. On the other hand, if you want to switch from your current computer
organization course to an ICS or ICS+ course, but are wary are making such
a drastic change all at once, then you can move toward ICS incrementally. You
can start with ORG, which teaches the traditional topics in a nontraditional way.
Once you are comfortable with that material, then you can move to ORG+, and
eventually to ICS. If students have no experience in C (for example they have
only programmed in Java), you could spend several weeks on C and then cover
the material of ORG or ICS.



