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Part I: Introduction
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Chapter 1 |

Ordinary Differential
Equations

Ordinary differential equations (ODEs) arise in many instances when using
mathematical modeling techniques for describing phenomena in science, en-
gineering, economics, etc. In most cases the model is too complex to allow
one to find an exact solution or even an approximate solution by hand: an
efficient, reliable computer simulation is required.

Mathematically, and computationally, a first cut at classifying ODE
problems is with respect to the additional or side conditions associated with
them. To see why, let us look at a simple example. Consider

u'(t) +u(t) =0, 0<t<h,

where ¢ is the independent variable (it is often, but not always, convenient
to think of ¢ as “time”), and u = u(t) is the unknown, dependent variable.
Throughout this book we use the notation

du d%u
r__ - ”n - 2
S Y T e

etc. We shall often omit explicitly writing the dependence of u on %.
The general solution of the ODE for u depends on two parameters o and

B,
u(t) = asin(t + B).
We can therefore impose two side conditions.

e Initial value problem (IVP): Given values u(0) = ¢; and v/(0) = cg,
the pair of equations

asin f = u(0) = ¢,

acos 3 =1u'(0) =c
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Figure 1.1: u vs. t for u(0) = 1 and various values of u'(0).

can always be solved uniquely for 8 = tan™! o and a = g (or

o= Eoisz'[a; at least one of these is well defined). The IVP has a unique

solution for any initial data ¢ = (c;,cp)7. Such solution curves are
plotted for ¢; = 1 and different values of ¢; in Figure 1.1.

¢ Boundary value problem (BVP): Given values u(0) = ¢; and u(b) =
c2, it appears from Figure 1.1 that for b = 2, say, if ¢; and ¢ are chosen
carefully then there is a unique solution curve that passes through
them, just like in the initial value case. However, consider the case
where b = 7: now different values of 4/(0) yield the same value u(7) =
—u(0) (see again Figure 1.1). So, if the given value of u(b) = ¢3 = —¢;
then we have infinitely many solutions, whereas if ¢; # —c¢; then no
solution exists.

This simple illustration already indicates some important general issues.
For IVPs, one starts at the initial point with all the solution information
and marches with it (in “time” )—the process is local. For BVPs the entire
solution information (for a second-order problem this consists of « and u')
is not locally known anywhere, and the process of constructing a solution is
global in t. Thus we may expect many more (and different) difficulties with
the latter, and this is reflected in the numerical procedures discussed in this
book.



Chapter 1: Ordinary Differential Equations 5

1.1 IVPs

The general form of an IVP that we shall discuss is

y =f(ty), 0<t<b,

y(0) = ¢ (given). (1.1)

Here y and f are vectors with m components, y = y(¢), and f is in general
a nonlinear function of t and y. When f does not depend explicitly on ¢, we
speak of the autonomous case. When describing general numerical methods
we shall often assume the autonomous case simply in order to carry less
notation around. The simple example from the beginning of this chapter is
in the form (1.1) with m = 2, y = (u, )7, £ = (¢, —u)T.

In (1.1) we assume, for simplicity of notation, that the starting point for
t is 0. An extension of everything which follows to an arbitrary interval of
integration [a, b] is obtained without difficulty.

Before proceeding further, we give three examples which are famous for
being very simple on one hand and for representing important classes of
applications on the other hand.

Example 1.1 (simple pendulum)

Consider a tiny ball of mass 1 attached to the end of a rigid, massless rod
of length 1. At its other end the rod’s position is fixed at the origin of a
planar coordinate system (see Figure 1.2).

Figure 1.2: Simple pendulum.

Denoting by 6 the angle between the pendulum and the y-axis, the
friction-free motion is governed by the ODE (cf. Example 1.5 below)

¢" = —gsiné, (1.2)
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where g is the (scaled) constant of gravity. This is a simple, nonlinear ODE
for 8. The initial position and velocity configuration translates into values
for #(0) and ¢’'(0). The linear, trivial example from the beginning of this
chapter can be obtained from an approximation of (a rescaled) (1.2) for
small displacements 8. . ¢

The pendulum problem is posed as a second-order scalar ODE. Much of
the software for IVPs is written for first-order systems in the form (1.1). A
scalar ODE of order m,

u™ = g(t,u,0/,... wl™D),

can be rewritten as a first-order system by introducing a new variable for
each derivative, with y; = w:

y'1 = Y2,
Y2 = Y3,

’
Ym—1 = Ym,

y‘;n = g(t! ylay% LR 1 ym)

Example 1.2 (predator-prey model)

Following is a basic, simple model from population biology which involves
differential equations. Consider an ecological system consisting of one prey
species and one predator species. The prey population would grow unbound-
edly if the predator were not present, and the predator population would
perish without the presence of the prey. Denote

e y;(t)—the prey population at time ¢;

y2(t)—the predator population at time ¢;

e a—prey’s birthrate minus prey’s natural death rate (o > 0);

e [—probability of a prey and a predator coming together;

e y—predator’s natural growth rate (without prey; v < 0);

e 6—increase factor of growth of predator if prey and predator meet.
Typical values for these constants are o = .25, 8 = .01, v = —1.00, § = .01.

Writing

a ——
y= Y ’ e [ By1y2 ’ (13)

Y2 YY2 + 0192
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Figure 1.3: Periodic solution forming a cycle in the y1 x y2 plane.

we obtain an ODE in the form (1.1) with m = 2 components, describing the
time-evolution of these populations.

The qualitative question here is, starting from some initial values y(0)
out of a set of reasonable possibilities, will these two populations survive
or perish in the long run? As it turns out, this model possesses periodic
solutions: starting, say, from y(0) = (80,30)7, the solution reaches the same
pair of values again after some time period T, i.e., y(T") = y(0). Continuing
to integrate past T yields a repetition of the same values, y(T +t) = y(2).
Thus, the solution forms a cycle in the phase plane (y1,y2) (see Figure 1.3).
Starting from any point on this cycle, the solution stays on the cycle for all
time. Other initial values not on this cycle yield other periodic solutions with
a generally different period. So, under these circumstances the populations
of the predator and prey neither explode nor vanish for all future times,
although their number never becomes constant.! ¢

In other examples, such as the Van der Pol equation (7.13), the solution forms an
attracting limit cycle: starting from any point on the cycle the solution stays on it for all
time, and starting from points near the solution, it tends in time towards the limit cycle.

The neutral stability of the cycle in our current example, in contrast, is one reason
why this predator-prey model is discounted among mathematical biologists as being too
simple.
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Figure 1.4: Method of lines. The shaded strip is the domain on which the
diffusion PDE is defined. The approzimations y;(t) are defined along the
dashed lines.

Example 1.3 (a diffusion problem)
A typical diffusion problem in one space variable z and time ¢ leads to the
partial differential equation (PDE)

B0 (0
ot oz \Poz g\L Uy

for an unknown function u(t, z) of two independent variables defined on a
strip 0 < z < 1, t > 0. For simplicity, assume that p =1 and g is a known
function. Typical side conditions which make this problem well posed are

u(0,z) =¢(z), 0<z <1 (initial conditions),
u(t,0) = aft), u(t,1) = B(t), t >0 (boundary conditions).

To solve this problem numerically, consider discretizing in the space vari-
able first. For simplicity assume a uniform mesh with spacing Az = 1/(m+
1), and let y;(t) approximate u(z;,t), where z; = iAr, i =0,1,... ,m + 1.
Then replacing g—;’f by a second-order central difference, we obtain

dyi _ Yir1 — 2Yi +Yi-1
dt Azx?
with yo(t) = a(t) and ym+1(t) = B(t) given. We have obtained an initial
value ODE problem of the form (1.1) with the initial data ¢; = g(z:).

This technique of replacing spatial derivatives by finite difference approx-
imations and solving an ODE problem in time is referred to as the method
of lines. Figure 1.4 illustrates the origin of the name. Its more general form
is discussed further in Example 1.7 below. ¢

+9($i,yi), 7'=1’ , M,
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We now return to the general IVP for (1.1). Our intention in this book
is to keep the mumber of theorems down to a minimum: the references which
we quote have them all in great detail. But we will nonetheless record those
which are of fundamental importance, and the one just below captures the
essence of the (relative) simplicity and locality of initial value ODEs. For
the notation that is used in this theorem and throughout the book, we refer
to Section 1.6.

Theorem 1.1 Let f(t,y) be continuous for all (t,y) in a region
D={0<t<b |y| < oo}. Moreover, assume Lipschitz continuity
in y: there exists a constant L such that for all (t,y) and (t,¥) in
D,

[£(t,y) — £(t,9)| < Lly — yI. (1.4)
Then

1. For any c € R™ there exists a unique solution y(t) throughout
the interval [0,b] for the IVP (1.1). This solution is differen-
tiable.

2. The solution y depends continuously on the initial data: if ¥
also satisfies the ODE (but not the same initial values) then

ly(t) — 3(8)] < e[y (0) — 3(0)|- (1.5)
3. If § satisfies, more generally, a perturbed ODE
y' =1(ty) +r(t3),

where r is bounded on D, |r|| < M, then

I¥() — 9] < Py (0) ~ §O + M 1) (16)

Thus we have solution existence, uniqueness, and continuous dependence
on the data—in other words, a well-posed problem—provided that the condi-
tions of the theorem hold. Let us check these conditions: if f is differentiable
in y (we shall automatically assume this throughout), then the constant L
can be taken as a bound on the first derivatives of f with respect to y.
Denote by fy the Jacobian matriz,

(fy)ij = gfla 1<4,j<m.

2
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We can write

1
(ty)—£t9) = [ Z65+oly-9) ds

1
- /0 (6,9 + sy —9)) (y - 9) ds.

Therefore, we can choose L = sup; y)ep l|fy (¢, ¥)]l-

In many cases we must restrict D in order to be assured of the existence
of such a (finite) bound L. For instance, if we restrict D to include bounded
y such that |y —¢| < %, and on this D both the Lipschitz bound (1.4) holds
and |f(¢,y)] < M, then a unique existence of the solution is guaranteed for
0 <t < min(b, v/M), giving the basic existence result a more local flavor.

For further theory and proofs, see, for instance, Mattheij and Molnaar
[67].

Note: Before continuing our introduction, let us remark that
a reader who is interested in getting to the numerics of IVPs
as soon as possible may skip the rest of this chapter and the
next, at least on first reading.

1.2 BVPs

The general form of a BVP which we consider is a nonlinear first-order
system of m ODEs subject to m independent (generally nonlinear) boundary
conditions,

y =£(t,y), (1.7a)
g(y(0),y(b)) = 0. (1.7b)

We have already seen in the beginning of the chapter that in those cases
where solution information is given at both ends of the integration interval
(or, more generally, at more than one point in time), nothing general like
Theorem 1.1 can be expected to hold. Methods for finding a solution, both
analytically and numerically, must be global, and the task promises to be
generally harder than for IVPs. This basic difference is manifested in the
current status of software for BVPs, which is much less advanced or robust
than what is available for IVPs.
Of course, well-posed BVPs do arise on many occasions.
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Example 1.4 (vibrating spring)
The small displacement u of a vibrating spring obeys a linear differential
equation

—(p)u) + q(t)u =r(t),

where p(t) > 0 and ¢(t) > 0 for all 0 < t < b. (Such an equation also
describes many other physical phenomena in one space variable t.) If the
spring is fixed at one end and is left to oscillate freely at the other end, then
we get the boundary conditions

We can write this problem in the form (1.7) for y = (u,u')T. Better still,
we can use

u
Y= )
pu/
obtaining
Pty 1 (0)
f — s g =
qu—r ya(b)

This BVP has a unique solution (which gives the minimum for the energy
in the spring), as shown and discussed in many books on finite element
methods, e.g., Strang and Fix [90]. ¢

Another example of a BVP is provided by the predator-prey system of
Example 1.2, if we wish to find the periodic solution (whose existence is
evident from Figure 1.3). We can specify y(0) = y(b). However, note that b
is unknown, so the situation is more complex. Further treatment is deferred
to Chapter 6 and Exercise 7.5. A complete treatment of the topic of finding
periodic solutions for ODE systems falls outside the scope of this book.

What can generally be said about existence and uniqueness of solutions
to a general BVP (1.7)? We may consider the associated IVP (1.1) with the
initial values ¢ as a parameter vector to be found. Denoting the solution
for such an IVP by y(¢;c), we wish to find the solution(s) for the nonlinear
algebraic system of m equations

g(c,y(b;c)) = 0. (1.8)

However, in general, there may be one, many, or no solutions for a system

like (1.8). We delay further discussion to Chapter 6.
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1.3 Differential- Algebraic Equations

Both the prototype IVP (1.1) and the prototype BVP (1.7) refer to an
explicit ODE system

y' =£(t,y). (1.9)
A more general form is an implicit ODE

F(t,y,y') =0, (1.10)

where the Jacobian matrix Eé’T“’ﬂ is assumed to be nonsingular for all
argument values in an appropriate domain. In principle, it is then often
possible to solve for y’ in terms of ¢ and y, obtaining the explicit ODE form
(1.9). However, this transformation may not always be numerically easy
or cheap to realize (see Example 1.6 below). Also, in general there may “
be additional questions of existence and uniqueness; we postpone further
treatment until Chapter 9.

Consider next another extension of the explicit ODE, that of an ODE
with constraints:

x = f(t,x,z), (1.11a)
0 = g(t,x, z). (1.11b)

Here the ODE (1.11a) for x(t) depends on additional algebraic variables
z(t), and the solution is forced in addition to satisfy the algebraic constraints
(1.11b). The system (1.11) is a semi-explicit system of differential-algebraic
equations (DAEs). Obviously, we can cast (1.11) in the form of an implicit
ODE (1.10) for the unknown vector y = (} ); however, the obtained Jacobian
matrix

OF(t,u,v) I0

ov 0 0

is no longer nonsingular.

Example 1.5 (simple pendulum revisited)
The motion of the simple pendulum of Figure 1.2 can be expressed in terms
of the Cartesian coordinates (z1,x2) of the tiny ball at the end of the rod.
With z(t) a Lagrange multiplier, Newton’s equations of motion give

z{ = -z,

x,ZI = —2I2—49,

and the fact that the rod has a fixed length 1 gives the additional constraint

ac%+:cg=1.
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After rewriting the two second-order ODEs as four first-order ODEs, we
obtain a DAE system of the form (1.11) with four equations in (1.11a) and
one in (1.11b).

In this very simple case of a multibody system, the change of variables
x; = sinf, xr2 = —cos @ allows elimination of z by simply multiplying the
ODE for z; by z2 and the ODE for z2 by z; and subtracting. This yields
the simple ODE (1.2) of Example 1.1. Such a simple elimination procedure
is usually impossible in more general situations, though. ¢

The difference between an implicit ODE (with a nonsingular Jacobian
matrix) and a DAE is fundamental. Consider the simple example

' =2,
0=z —1t.

Clearly, the solution is = ¢, z = 1, and no initial or boundary conditions
are needed. In fact, if an arbitrary initial condition z(0} = ¢ is imposed,
it may well be inconsistent with the DAE (unless ¢ = 0, in which case this
initial condition is just superfluous). We refer to Chapter 9 for more on
this. Another point to note is that even if consistent initial values are given,
we cannot expect a simple, general existence and uniqueness theorem like
Theorem 1.1 to hold for (1.11). The nonlinear equations (1.11b) alone may
have any number of solutions. Again we refer the reader to Chapter 9 for
more details.

1.4 Families of Application Problems

Initial and boundary value problems for ODE and DAE systems arise in
a wide variety of applications. Often an application generates a family of
problems which share a particular system structure and/or solution require-
ments. Here we briefly mention three families of problems from important
applications. The notation we use is typical for these applications and is not
necessarily consistent with (1.1) or (1.11).

Note: You don’t need to understand the details given in this
section in order to follow the rest of the text; this material is
supplemental.

Example 1.6 (mechanical systems)
A fast, reliable simulation of the dynamics of multibody systems is needed
in order to simulate the motion of a vehicle for design or to simulate safety
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tests in physically based modeling in computer graphics, and in a variety of
instances in robotics. The system considered is an assembly of rigid bodies
(e.g., comprising a car suspension system). The kinematics define how these
bodies are allowed to move with respect to one another. Using generalized

position coordinates q = (qi,...,qn)7 for the bodies, with m (so-called
holonomic) constraints g;(¢,q(t)) =0, j = 1,... ,m, the equations of motion
can be written as

d (3L aL

— 1 = ———:0,']::1,...,77/,

dt \ dq; Jq;

where L = T'— U — )~ A;g; is the Lagrangian, T is the kinetic energy, and
U is the potential energy. See almost any book on classical mechanics, for
example, Arnold [1] or the lighter Marion and Thornton [65]. The resulting
equations of motion can be written as

q=v, (1.12a)
M(t, q)vl = f(ts 9, V) - GT(t= Q)A, (112b)
0= g(t’ Q)a (1120)

where G = gﬁ, M is a positive definite generalized mass matrix, f are the
applied forces (other than the constraint forces), and v are the generalized
velocities. The system sizes n and m depend on the chosen coordinates q.
Typically, using relative coordinates (describing each body in terms of its
near neighbor) results in a smaller but more complicated system. If the
topology of the multibody system (i.e., the connectivity graph obtained by
assigning a node to each body and an edge for each connection between
bodies) does not have closed loops, then with a minimal set of coordinates
one can eliminate all the constraints (i.e., m = 0) and obtain an implicit
ODE in (1.12). For instance, Example 1.1 uses a minimal set of coordinates
for a particular multibody system without loops, while Example 1.5 does
not. If the multibody system contains loops (e.g., a robot arm, consisting of
two links, with the path of the “hand” prescribed, as in Example 10.9), then
the constraints cannot be totally eliminated in general, and a DAE must be
considered in (1.12) even if a minimal set of coordinates is employed. ¢

Example 1.7 (method of lines)
The diffusion equation of Example 1.3 is an instance of a time-dependent
PDE in one space dimension,

ou ou 0%u

Time-dependent PDEs naturally arise in more than one space dimension
as well, with higher-order spatial derivatives and as systems of PDEs. The



