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1

Basic Principles of Classical Mechanics

For describing the motion of a mechanical system various mathematical mod-
els are used based on different “principles” — laws of motion. In this chapter
we list the basic objects and principles of classical dynamics. The simplest and
most important model of the motion of real bodies is Newtonian mechanics,
which describes the motion of a free system of interacting points in three-
dimensional Euclidean space. In §1.6 we discuss the suitability of applying
Newtonian mechanics when dealing with complicated models of motion.

1.1 Newtbnian Mechanics

1.1.1 Space, Time, Motion

The space where the motion takes place is three-dimensional and Euclidean
with a fixed orientation. We shall denote it by E3. We fix some point o € E3
called the “origin of reference”. Then the position of every point s in E3 is
uniquely determined by its position vector 68 = r (whose initial point is 0 and
end point is s). The set of all position vectors forms the three-dimensional
vector space R3, which is equipped with the scalar product (, ).

Time is one-dimensional; it is denoted by ¢ throughout. The set R = {t}
is called the time axis.

A motion (or path) of the point s is a smooth map A — E3, where A is an
interval of the time axis. We say that the motion is defined on the interval A.
If the origin (point o) is fixed, then every motion is uniquely determined by a
smooth vector-function r: A — R3.

The image of the interval A under the map ¢ — r(t) is called the trajectory
or orbit of the point s.

The velocity v of the point s at an instant ¢ € A is by definition the
derivative dr/dt = #(t) € R3. Clearly the velocity is independent of the choice
of the origin.
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Fig. 1.1.

The acceleration of the point is by definition the vector a = v = ¢ € R3.
The velocity and acceleration are usually depicted as vectors with initial point
at the point s (see Pig. 1.1).

The set E3 is also called the configuration space of the point s. The pair
(s, v) is called the state of the point, and the set E3 x R*{v}, the phase (or
state) space.

Now consider a more general case when there are n points sy, . . ., s, mov-
ing in the space E3. The set E3" = E3{s;} x --- x E3{s,} is called the
configuration space of this “free” system. If it is necessary to exclude colli-
sions of the points, then E3" must be diminished by removing from it the
union of diagonals

A= U{si=s}

i<y
Let (rq,...,r,) =r € R3" be the position vectors of the points sy, . . ., sp.

A motion of the free system is given by smooth vector-functions r(t) =
(r1(¢), ..., rn(t)). We define in similar fashion the velocity

v=rt=(F,...,F) = (V1,...,Vv,) € R
and the acceleration
a=ft=(f,...,f) =(ay,...,a,) € R*".
The set E3" x R3"{v} is called the phase (or state) space, and the pair
(s, v), the state of the system.
1.1.2 Newton—Laplace Principle of Determinacy

This principle (which is an experimental fact) asserts that the state of the
system at any fixed moment of time uniquely determines all of its motion
(both in the future and in the past).

Suppose that we know the state of the system (rg, vp) at an instant tg.
Then, according to the principle of determinacy, we know the motion r(t),



1.1 Newtonian Mechanics 3

t € A CR;r(tg) = rg, £(tg) = Fg = vp. In particular, we can calculate
the acceleration i at the instant ¢t = to.! Then #(to) = f(¢o, ro, Fg), where f
is some function whose existence follows from the Newton—Laplace principle.
Since the time to can be chosen arbitrarily, we have the equation

F=f(,r,r)

for all £.

This differential equation is called the equation of motion or Newton’s
equation. The existence of Newton’s equation (with a smooth vector-function
f: R{t} x R3"{r} x R3"{#} — R3") is equivalent to the principle of deter-
minacy. This follows from the existence and uniqueness theorem in the the-
ory of differential equations. The function f in Newton’s equations is usually
determined in experiments. The definition of a mechanical system includes
specifying this function.

We now consider examples of Newton’s equations.

a) The equation of a point in free fall in vacuum near the surface of the
Earth (obtained experimentally by Galileo) has the form ¥ = —ge,, where
g ~ 9.8 m/s? (the acceleration of gravity) and e, is the vertical unit vector.
The trajectory of a falling point is a parabola.

b) Hooke showed that the equation of small oscillations of a body attached
to the end of an elastic spring has the form # = —az, a > 0. The constant
coefficient o depends on the choice of the body and spring. This mechanical
system is called a harmonic oscillator (see Fig. 1.2).

f(f
~——

X

Fig. 1.2. Harmonic oscillator

It turned out that in experiments, rather than finding the acceleration f on
the right-hand side of Newton’s equations, it is more convenient to determine
the product mf = F, where m is some positive number called the mass of
the point (an instructive discussion of the physical meaning of the notion of
mass can be found in [601, 401, 310]). For example, in Hooke's experiments
the constant ma = ¢ depends on the properties of the elastic spring, but not
on the choice of the body. This constant is called the coefficient of elasticity.

The pair (s, m) (or (r,m), where r is the position vector of the point s)
is called a material point of mass m. In what follows we shall often denote a
point s and its mass m by one and the same symbol m. If a system of material

! We assume that all the functions occurring in dynamics are smooth.
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points consists of n points with masses mq, . .., m,, then Newton’s equations

f,'=fi(t,l‘1,...,l‘n, l"l,...,l"n), lsisn,

can be rewritten as
m,r, ZFi(t, I‘,I"), 1 S’L < n.

The vector F; = m;f; is called the force acting on the point m;. “The word
force does not occur in the principles of Dynamics, as we have just presented
it. One can, in effect, bypass it.”? The last equations are also called Newton’s
equations.

c) As established by Newton (in development of earlier ideas of Kepler), if
there are n material points (ry, my), ..., (rn, my) in space, then the ith point
is acted upon by the force F; = Z#j Fi;, where

YmEmy
Fy = ——Fl—srkl, Iy =T} — Tk, ~ = const > 0.
Kl

This is the law of universal gravitation.

d) When a body is moving fast through the air, the resistance force is
proportional to the square of the velocity (Stokes’ law). Hence the equation
of a body falling in the air has the form mz = mg — cz2, ¢ > 0. It turns out
that there always exists the limit tlim v(t) equal to /mg/c and independent

—00

of the initial state.

When a body moves slowly in a resisting medium, the friction force is a
linear function of the velocity. The idea of approximating the resistance force
by the formula

F = —av - cv?, a, ¢ = const > 0,
goes back to Huygens; this formula takes into account both limiting cases.
The vertical fall of a heavy body is described by the equation

mi =mg — az — cz’.

It is easy to show that

/o2 + dmac —
lim o(t) = YO tomgc—a

t—o0 2c

For a > 0 this quantity is clearly less than /mg/c.

2 Appell ([5], p-94). In Newton'’s time the word “force” (vis in Latin) was used
for various objects, for example, the acceleration of a point. Leibnitz called the
product of the mass of a point and the square of its velocity vis viva (live force).
The modern term “force” corresponds to Newton’s vis motrix (accelerating force).
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Suppose that a material point (r,m) is moving under the action of a
force F. Let

r = re; + ye, + ze,, F=Xe;+Ye, + Ze,,

where e, ey, e, is a fixed orthonormal frame of reference. Then Newton’s
equation mi = F is equivalent to the three scalar equations

mi =X, my=Y, mz = Z.

This self-evident trick, which was suggested by Maclaurin for describing the
motion of a point in three-dimensional space, was not evident to the classics.
Before Maclaurin the so-called natural equations of motion were usually used.

Let s be the natural parameter along the trajectory of motion of the point.
The trajectory is given by the correspondence s — r(s). The unit vector
7 =r' (prime denotes differentiation with respect to the natural parameter)
is tangent to the trajectory. The vector

rII

e

defines the normal, and the vector 3 = 7 X v, the binormal, to the trajectory.
The vectors T,v, 3 are functions of s. Their evolution is described by the
Frenet formulae, which are well-known in geometry:

T = kv
V' = —kr + »0
8 = - nv.

The quantities k and > depend on the point of the trajectory; they are called
the curvature and the torsion of the trajectory at this point. The motion of
the point r: A — E3 can be represented as the composition ¢t — r(s(t)).
Then v = r's and a = r"$? + r'§. Since r’ = 7 and r’’ = 7’/ = kv (Frenet
formula), we have

a= 5T+ ks’v.

This formula was essentially known already to Huygens. Multiplying it by m
and setting F' = F,7+ F,v+ F33 we arrive at the natural equations of motion

ms = Fy, mks® = F,, F3=0. (1.1)

Since s is the arc length, § = v is the speed of motion of the point. Then
the first two equations (1.1) are usually written in the form

2
mo = Fy, % =F,, (1.2)

where p = k™! is the radius of curvature of the trajectory.
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We now consider some more examples of application of Newton’s equation.

e) It is known [4] that a charge e placed in an electro-magnetic field is
acted upon by the force

F=e(E+%(va)>,

where E, H are the strengths of the electric and magnetic fields (they satisfy
the Maxwell system of equations) and c is the speed of light. This force is
called the Lorentz force.

Consider a special case of motion where the electric field is absent. Then
the Lorentz force is orthogonal to the velocity of the charge and therefore
F; = 0 in equations (1.2). Consequently, the charge is moving with constant
speed.

Suppose in addition that the magnetic field is homogeneous (H = const),
and at the initial instant the velocity of the charge is orthogonal to the mag-
netic force lines. Then, as can be easily seen, the trajectory of the charge is a
planar curve orthogonal to H. Since

F,| = e'vc'H, where H = [H|,

it follows from the second of equations (1.2) that the charge is moving along

a circle of radius
muce

P=H
This quantity is called the Larmor radius.
More interesting is the problem of motion of a charge in the field of a
magnetic pole, which was considered by Poincaré. If E = 0, then the magnetic
field is stationary and satisfies the Maxwell equations

curl H = 0, divH = 0.

It follows from the first equation that H is locally conservative (H = grad U),
and the second equation shows that the potential is a harmonic function
(AU = 0, where A is the Laplace operator). Poincaré considered the only
potential depending only on the distance:

k
U=—, k = const.
||
In this case,
__fr
GE

and therefore the equation of motion of the charge has the form

.f_rxi' _me
pe= 3]’ F="
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It is equivalent to the following relation:

. r
pu(r x 1) = ] +a, a = const.

Consequently,
(a,r) = Ir]. (1.3)

This is the equation of a cone of revolution whose symmetry axis is parallel
to the vector a. We demonstrate that the charged particle moves along the
geodesics on this cone. Indeed, r and r are tangent to the cone (1.3). Conse-
quently, the acceleration vector is orthogonal to this cone. Since the speed of
motion is constant, by Huygens’ formula the normal to the trajectory coin-
cides with the normal to the cone. Therefore the trajectories are geodesics.

This result of Poincaré explains the phenomenon of cathode rays being
drawn in by a magnetic pole discovered in 1895 by Birkeland [501].

f) We consider in addition the problem of external ballistics: a material
point (r,m) is moving along a curvilinear orbit near the surface of the Earth
experiencing the air resistance. We assume that the resistance force F has
opposite direction to the velocity and its magnitude can be represented in the
form

|F| = mgp(v),
where @ is a monotonically increasing function such that ¢(0) = 0 and p(v) —
+0c0 as v — +00.
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Fig. 1.3. Ballistic trajectory

Since at every moment of time the vectors of the velocity of the point, its
weight, and the resistance force lie in the same vertical plane, the trajectory
of the point is a planar curve. In the plane of the orbit we introduce Cartesian
coordinates x, y such that the y-axis is directed vertically upwards. Let a be
the angle between the velocity of the point v and the horizon (Fig.1.3). The
first of equations (1.2) gives the relation

= —g[sina—+—<,o(v)]. (1.4)



