B\ & - X L IC

(RZEDRR) 61

A. L. Onishchik (Ed.)

Lie Groups and Lie Algebras 1

Foundations of Lie Theory,
Lie Transformation Groups

ZRE SR T

IR e EA, AT

[T w 7 g B 2 3



B FLFRFI(BURK) 61

Lie Groups and Lie Algebras I

Foundations of Lie Theory, Lie Transformation Groups

FRESFEARAI
TOER, TR

A. L. Onishchik (Ed.)

t



Contents

I. Foundations of Lie Theory
A.L.Onishchik, E.B. Vinberg
1

II. Lie Transformation Groups
V. V. Gorbatsevich, A.L. Onishchik
95

Auther Index
231

Subject Index
232



I. Foundations of Lie Theory
A. L. Onishchik, E. B. Vinberg

Translated from the Russian
by A. Kozlowski

Contents
Introduction . . . . . . . . . .. ..o 4
Chapter 1. Basic Notions . . . . . . . . . . .. ... .. ..... 6
§1. Lie Groups, Subgroups and Homomorphisms . . . . . . . . .. 6
1.1 Definitionof aLie Group . . . . . . . . . . . .. .. ... 6
1.2 Lie Subgroups . . . . . . . . . . .. 0oL 7
1.3 Homomorphisms of Lie Groups . . . . . . . . . . ... .. 9
1.4 Linear Representations of Lie Groups . . . . . . . . . . .. 9
1.5 Local Lie Groups . . . . . « « v v v v v v v i e 11
§2. Actionsof LieGroups . . . . . . . . . .. . ... 12
2.1 Definition of an Action . . . . . . . . . . . ... ... .. 12
2.2 Orbits and Stabilizers . . . . . . . .. .. ... ..... 12
2.3 Images and Kernels of Homomorphisms . . . . . . .. . .. 14
2.4 Orbits of Compact Lie Groups . . . . . . . . . ... ... 14
§3. Coset Manifolds and Quotients of Lie Groups . . . . . . . . .. 15
3.1 Coset Manifolds . . . . . .. ... ... .. ....... 15
3.2 Lie Quotient Groups . . . . . . . . .. .. ... ..., 17
3.3 The Transitive Action Theorem and the Epimorphism Theorem 18
3.4 The Pre-image of a Lie Group Under a Homomorphism . . . 1§
3.5 Semidirect Products of Lie Groups . . . . . . . . . . . .. 19
84. Connectedness and Simply-connectedness of Lie Groups . . . . . 21
4.1 Connected Components of a Lie Group . . . . . . . . . .. 21
4.2 Investigation of Connectedness of the Classical Lie Groups . . 22
4.3 Covering Homomorphisms . . . . . . . .. ... ... .. 24

4.4 The Universal Covering Lie Group . . . . . . . ... . .. 26



2 A.L. Onishchik, E. B. Vinberg

4.5 Investigation of Simply-connectedness of the
Classical Lie Groups . . . « « « « v v v« v 0 v v oot

Chapter 2. The Relation Between Lie Groups and Lie Algebras

§1. The Lie Functor . . . . . . . . . . . . o . oo oo
1.1 The Tangent Algebra of a Lie Group . . . . . . . . . . ..
1.2 Vector FieldsonaLieGroup . . . . ... ... ... ...
1.3 The Differential of a Homomorphism of Lie Groups . . . . .
1.4 The Differential of an Action of a Lie Group . . . . . . ..
1.5 The Tangent Algebra of a Stabilizer . . . . . . . . ... ..
1.6 The Adjoint Representation . . . . . . . . .. .. ... ..
§2. Integration of Homomorphisms of Lie Algebras . . . . . . . ..
2.1 The Differential Equation of a Path in a Lie Group . . . . .
2.2 The Uniqueness Theorem . . . . . . . .. ... ... ...
2.3 Virtual Lie Subgroups . . . . . . . . .. ... ..o
2.4 The Correspondence Between Lie Subgroups of a Lie Group
and Subalgebras of Its Tangent Algebra . . . . . . . . . ..
2.5 Deformations of Paths in Lie Groups . . . . . . . .. . ..
2.6 The Existence Theorem . . . . . . . . . . . .. ... ...
2.7 Abelian Lie Groups . . . . . . . .« . .« o .o
§3. The Exponential Map . . . . . . . .. .. .. ...
3.1 One-Parameter Subgroups . . . . . . . . . ... .. ...
3.2 Definition and Basic Properties of the Exponential Map
3.3 The Differential of the Exponential Map . . . . . . .. ..
3.4 The Exponential Map in the Full Linear Group . . . . . . .
3.5 Cartan’s Theorem . . . . . . . ... . ... . ... ...
3.6 The Subgroup of Fixed Points of an Automorphism
ofaLlieGroup . . . . . . . . .. e
§4. Automorphisms and Derivations . . . . . ... ... ... ..
4.1 The Group of Automorphisms . . . . . . . . .. .. ...
4.2 The Algebra of Derivations . . . . . . .. . .. ... ...
4.3 The Tangent Algebra of a Semi-Direct Product of Lie Groups
§5. The Commutator Subgroup and the Radical . . . . . . . . . ..
5.1 The Commutator Subgroup . . . . . . . . . . .« .. ...
5.2 The Maltsev Closure . . . . . . . . . .« . o v o v o
5.3 The Structure of Virtual Lie Subgroups . . . . . . . . . ..
5.4 Mutual Commutator Subgroups . . . . . . . .. ... ...
5.5 Solvable Lie Groups . . . . . e e e e e e e e e e
56 The Radical . . . . . . . . . v v v v oo
5.7 Nilpotent Lie Groups . . . . . . . . . . .. ... ...

Chapter 3. The Universal Enveloping Algebra . . . . . . . ... ..

§1. The Simplest Properties of Universal Enveloping Algebras
1.1 Definition and Construction . . . . . . . . . . . .. . ..



1. Foundations of Lie Theory 3

1.2 The Poincaré-Birkhoff~-Witt Theorem . . . . . . . . . . .. 61
1.3 Symmetrization . . . . . .. ... ... .. ... ... 63
1.4 The Center of the Universal Enveloping Algebra . . . . . . . 64
1.5 The Skew-Field of Fractions of the Universal Enveloping
Algebra . . . . . ... oo 64
§2. Bialgebras Associated with Lie Algebras and Lie Groups . . . . . 66
21 Bialgebras . . . . . . .. ..o, 66
2.2 Right Invariant Differential Operators on a Lie Group . . . . 67
2.3 Bialgebras Associated with a Lie Group . . . . . . . . . .. 68
§3. The Campbell-Hausdorff Formula . . . . . . . . ... .. ... 70
3.1 FreeLie Algebras . . . . . . . . .. .. ... ....... 70
3.2 The Campbell-Hausdorff Series . . . . . .. .. .. .. .. 71
3.3 Convergence of the Campbell-Hausdorff Series . . . . . . . . 73
Chapter 4. Generalizations of Lie Groups . . . . . . . ... . ... 74
§1. Lie Groups over Complete Valued Fields . . . . . ... .. .. 74
11 Valued Fields . . . . .. ... ... ... .. ....... 74
1.2 Basic Definitions and Examples . . . . . . ... ... ... 75
1.3 Actionsof LieGroups . . . . . . . .. .. ... ..... 75
1.4 Standard Lie Groups over a Non-archimedean Field . . . . . 76
1.5 Tangent Algebras of Lie Groups . . . . . . . .. ... ... 76
§2. Formal Groups . . . . . . . . . . .. . 78
2.1 Definition and Simplest Properties . . . . . . .. ... .. 78
2.2 The Tangent Algebra of a Formal Group . ... .. ... .. 79
2.3 The Bialgebra Associated with a Formal Group . . . . . . . 80
§3. Infinite-Dimensional Lie Groups . . . . . . . . . ... . .... 80
3.1 Banach LieGroups . . . . . . ... .. .. ........ 81
3.2 The Correspondence Between Banach Lie Groups and
Banach Lie Algebras . . . . . .. .. ... ... ..... 82
3.3 Actions of Banach Lie Groups on Finite-Dimensional Manifolds 83
3.4 Lie-Fréchet Groups™ . . . . . . . . . . . .. ... ..... 84
3.5 ILB- and ILH-Lie Groups . . . . . . .. ... ... .... 85
84. Lie Groups and Topological Groups . . . . . . .. .. ... .. 86
4.1 Continuous Homomorphisms of Lie Groups . . . . . . . . . 87
4.2 Hilbert’s 5-th Problem . . . . . . . .. .. ... ..... 87
§5. AmalyticLoops . . . . . . . . ... ... ... ... 88
5.1 Basic Definitions and Examples . . . . . .. ... ... .. 88
5.2 The Tangent Algebra of an AnalyticLoop . . . . . .. . .. 89
5.3 The Tangent Algebra of a Diassociative Loop . . . ... .. 90
5.4 The Tangent AlgebraofaBolLoop . . . . . . . .. .. .. 91

References . . . . . . . . . . . . ..o 92



4 A.L. Onishchik, E. B. Vinberg

Introduction

The theory of Lie groups, to which this volume is devoted, is one of the
classical well established chapters of mathematics. There is a whole series
of monographs devoted to it (see, for example, Pontryagin 1984, Postnikov
1982, Bourbaki 1947, Chevalley 1946, Helgason 1962, Sagle and Walde 1973,
Serre 1965, Warner 1983). This theory made its first appearance at the end
of the last century in the works of S.Lie, whose aim was to apply algebraic
methods to the theory of differential equations and to geometry. During the
past one hundred years the concepts and methods of the theory of Lie groups
entered into many areas of mathematics and theoretical physics and became
inseparable from them.

The first three chapters of the present work contain a systematic exposition
of the foundations of the theory of Lie groups. We have tried to give here
brief proofs of most of the more important theorems. Certain more complex
theorems, not used in the text, are stated without proof. Chapter 4 is of a
special character: it contains a survey of certain contemporary generalizations
of Lie groups.

The authors deliberately have not touched upon structural questions of the
theory of Lie groups and algebras, in particular, the theory of semi-simple
Lie groups. To these questions will be devoted a separate study in one of the
future volumes of this series.

In this entire work Lie groups, as a rule, will be denoted with capital
Latin letters, and their tangent algebras with the corresponding small Gothic
letters, In addition the following notation will be used:

G° - connected component of the identity of a Lie group (or a topological
group) G;

G' = (C;‘, G) - the commutator subgroup of a group G; G®) = (GP—1),
Gr);

Rad G - the radical of a Lie group G;

rad g — the radical of a Lie algebra g;

% — the semidirect product of groups (normal subgroup on the left);

-B — the semidirect sum of Lie algebras (ideal on the left);

T — the group of complex numbers of modulus 1;

exp — the exponential mapping;

Ad - the adjoint representation of a Lie group;

ad — the adjoint representation of a Lie algebra;

Aut A - the group of automorphisms of a group or algebra A;

Int G - the group of inner automorphisms of a group G;

Der A - the Lije algebra of derivations of an algebra A4;

Int g — the group of inner automorphisms of a Lie algebra g;

GL (V) — the group of all automorphisms (invertible linear transforma-
tions) of a vector space V;
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L,(K) — the associative algebra of all square matrices of order n over a
field K;

GL,(K) - the group of all non singular matrices of order n over K;

SL,(K) - the group of all matrices of order n with determinant 1;

PGL,(K) = GL(K)/{\E} - the projective linear group;

GL; (R) - the group of all real matrices of order n with positive determi-
nant;

On(K) — the group of all orthogonal matrices of order n over K;

SO (K) = Op(K) N SLa(K);

Sp,.(K) - the group of all symplectic matrices of order n over K (n even):

Ok, — the group of all pseudo-orthogonal real matrices of signature (k,1);

SOk, = Ok, N SL,(R);

O}, — the group of pseudo-orthogonal matrices of signature (k,!) whose
minor of order k at the top left corner is positive;

U, — the group of unitary complex matrices of order n;

Ui, ~ the group of pseudo-unitary complex matrices of signature (k,);

SU, = U, NSL,(C); SUk,z =Ug N SLk+1(C).

Finally we would like to mention a piece of non-standard terminology: we
use the term “the tangent algebra of a Lie group” instead of the usual “the Lie
algebra of a Lie group”. We do so with a view to emphasise the construction
of this Lie algebra as the tangent space to the Lie group. This seems to be
appropriate here since, in particular, the tangent algebra of an analytic loop
is not, in general, a Lie algebra. We reserve the term “Lie algebra” for its
algebraic context. )
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Chapter 1
Basic Notions

We will assume familiarity with the basic concepts of manifold theory.
However in order to avoid misunderstandings some of them will be defined in
the text. The basic field, by which we mean either the field R of real numbers
or the field C of complex numbers, will be denoted by K. Unless stated oth-
erwise, differentiability of functions will be understood in the following sense:
in every case there exist as many derivatives as are needed. Differentiability
of manifolds and maps is understood in the same sense. The Jacobian matrix

of a system of differentiable functions fy,... , fy, of variables ¢,... ,z, will
be denoted by 32,: i’: . For m = n its determinant will be denoted by
D{(fiye 1S

D Llyere ,:tn)

The tangent space of a manifold X at a point = will be denoted by T(X)
and the differential of a map f: X — Y at a point = by d.f. In many cases,
when it is clear which point is being considered, the subscript will be omitted
in denoting a tangent space or a differential.

All differentiable manifolds will be assumed to possess a countable base of
open sets.

§1. Lie Groups, Subgroups and Homomorphisms

1.1, Definition of a Lie Group. A Lie group over the field K is a group
G equipped with the structure of a differentiable manifold over K in such a
way that the map

p:GxG -G, (z,y) ~ 2y

is differentiable. In other words, the coordinates of the product of two ele-
ments have to be differentiable functions of the coordinates of the factors.

With the aid of the implicit function theorem it is easy to show that in
any Lie group the inverse

1:G -G, z— !

is also a differentiable map. Lie groups over C are called complez Lie groups
and Lie groups over R - real Lie groups. Any complex Lie group can be
viewed as a real Lie group of twice the dimension.

Orne can also consider analytic groups by requiring that the manifold G
and the map u be analytic over the field K. Clearly, every complex Lie group
is analytic, but even in the real case it turns out that in any Lie group
there exists an atlas with analytic transition functions, in which the map x
is expressed in terms of analytic functions (see 3.3 of Chap. 3).
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Examples. 1. The additive group of the field K (we will denote it also by
K).
2. The multiplicative group K of the field K.

3. ‘The circle’ T = {z € C* : }2| = 1} is a real Lie group.

4. The group GL,(K) of invertible matrices of order n over the field K,
with the differentiable structure of an open subset of the vector space L, (K)
of all matrices, i.e. (global) coordinates are given by the matrix entries.

5. The group GL(V) of invertible linear transformations of an n-dimension-
al vector space over the field K can be regarded as a Lie group in view of the
isomorphism GL(V) = GL,(K), which assigns to each linear transformation
its matrix with respect to some fixed basis.

6. The group GA(S) of (invertible) affine transformations of an n-dimen-
sional affine space S over the field K possesses also a canonical differentiable
structure, which turns it into a Lie group. Namely, with respect to the affine
coordinate system of the space S affine transformations can be written in the
form X — AX + B, where X is a column vector of coordinates of a point, 4
an invertible square matrix and B a column vector. The entries of the matrix
A and the column vector B can be taken as (global) coordinates in the group
GA(S).

7. Any finite or countable group equipped with the discrete topology and
the structure of a 0-dimensional differentiable manifold.

The direct product of Lie groups is the direct product of the correspond-
ing abstract groups endowed with the differentiable structure of the direct
product of differentiable manifolds.

The Lie group K™ (the direct product of n copies of the additive group of
the field K) is called the n-dimensional vector Lie group. The Lie group T
(the direct product of n copies of the group T) is called the n-dimensional
torus.

1.2. Lie Subgroups. A subgroup H of a Lie group G is said to be a Lie
subgroup if it is a submanifold of the underlying manifold of G.

Let us recall that by a m-dimensional submanifold of an n-dimensional
manifold X we mean a subset Y C X such that for each of its points y one
of the following equivalent conditions is satisfied:

(1) in a local coordinate system in some neighbourhood U of the point ¥
the subset Y N U can be described parametrically in the form

:l‘,;=¢i(t1,...,tm) (izl,...,n)
where ¢4, ... ,¢, are differentiable functions defined in some domain of the
space K™ and the rank of the matrix %‘_—';—’t‘%) at all points of this domain

is equal to m.
(2) in a local coordinate system in some neighbourhood U of the point y
the set Y N U can be given by equations of the form

fi(z1,...,2,) =0 (i=1,...,n—-m),



8 A.L. Onishchik, E. B. Vinberg

where fi,..., fn_m are differentiable functions and the rank of the matrix
a—gf(‘xT—f‘—"x‘:’;—‘l at all points of the neighbourhood U is n — m.
(3) in a suitable local coordinate system in some neighbourhood U of the

point y the subset Y N U is given by equations
Tm+1 = ...=$n=0.

{Sometimes the terms ‘submanifold’ and correspondingly ‘Lie subgroup’ are
understood in a wider sense. In this book this wider meaning is referred to
by the term ‘virtual Lie subgroup’; see 2.3 of Chap. 2. Lie subgroups in our
sense are also known as ‘closed Lie subgroups’.)

Every m-dimensional submanifold of a differentiable manifold carries the
structure of a m-dimensional differentiable manifold, as local coordinates on

which we can take, for example, the parameters ¢;,... ,t, from condition
(1). Every Lie subgroup, endowed with this differentiable structure is itself a
Lie group.

From the topological and the differential geometric viewpoints every sub-
group H of a Lie group G looks at any point A € H the same as at the
identity, since it is transformed into itself by a translation (left or right) by
h, which is a diffeomorphism of the manifold G. Therefore in order to ver-
ify that a subgroup H is a Lie subgroup it suffices to establish that it is a
submanifold in some neighbourhood of the identity.

Examples. 1. Any subspace of a vector space is a Lie subgroup of the
corresponding Lie group.

2. The group T (see Example 3 of 1.1) is a Lie subgroup of the group C*,
viewed as a real Lie group.

3. Any discrete subgroup is a Lie subgroup.

4. The group of non-singular diagonal matrices is a Lie subgroup of the
Lie group GL,(K).

5. The group of non-singular triangular matrices is a Lie subgroup of the
Lie group GL,(K).

6. The group SL,(K) of unimodular matrices is a codimension 1 Lie sub-
group of the Lie group GL,(K).

7. The group O, {K) of orthogonal matrices is a Lie subgroup of dimension
1’—(—"2_—11 of the Lie group GL,(K).

8. The group Sp,,(K) (n even) of symplectic matrices is a Lie subgroup of
dimension 3(1;—1) of the Lie group GL,(K).

9. The group U,, of unitary matrices is a real Lie subgroup of dimension
n? of the Lie group GL,(C).

A Lie subgroup of the Lie group GL,(V) (and in particular of GL,(K) =
GL(K™)) is called a linear Lie group.

As any submanifold, a Lie subgroup is an open subset of its closure. How-
ever, any open subgroup of a topological group is at the same time closed,
since it is the complement of the union of its own cosets, which, like the
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subgroup itself, are open subsets. Hence any Lie subgroup is closed. For real
Lie groups the converse is also valid, see Theorem 3.6 of Chap. 2.

1.3. Homomorphisms of Lie Groups. Let G and' H be Lie groups. A map
f : G — H is a homomorphism if it is simultaneously a homomorphism of
abstract groups and a differentiable map. A homomorphism f : G — H is
called an isomorphism if there exists an inverse f~1 : H — G, ie. if f is
simultaneously an isomorphism of abstract groups and a diffeomorphism of
manifolds (however, in connection with this, see the corollary to Theorem
3.4).

Examples. 1. The exponential map = — e* is a homomorphism from the
additive Lie group K to the Lie group K>

2. The map A +— det A is a homomorphism from the Lie group GL,(K)
to the Lie group K*

3. For any element g of a Lie group G the inner automorphism a(g) : ¢ —
gzg~! is a Lie group automorphism.

4. The map =  €** is a homomorphism from the Lie group R to the Lie
group T.

5. The map assigning to each affine transformation of an affine space its
differential (linear part) is a homomorphism from the Lie group GA(S) (see
Example 6 of 1.1) to the Lie group GL(V'), where V is the vector space
associated with S.

6. Any homomorphism from a finite or a countable group to a Lie group
is a homomorphism in the sense of the theory of Lie groups.

Obviously the composition of homomorphisms of Lie groups is also a ho-
momorphism of Lie groups.

1.4. Linear Representations of Lie Groups. A homomorphism from a Lie
group G to the Lie group GL(V) is called its linear representation in the
space V.

For example, if to each matrix A € GL,(X) we assign the transformations
Ad(A) and Sq(A) of the space L,(K), defined by the formulas

Ad(A)X = AXA™!, Sq(A)X = AX AT, (1)

then we obtain linear representations Ad and Sq of the Lie group GL,(K) in
the space L,(K).

Sometimes one considers complex linear representations of real Lie groups
or real linear representations of complex Lie groups. In the former case, it
is understood that the group of linear transformations of a complex vector
space is being considered as a real Lie group, in the latter — that the given
complex Lie group is being considered as a real one.

Let R and S be linear representations of some group G in spaces V and
U respectively. Recall that, by the sum of representations R and S, is meant
the linear representation R + S of the group G in the space V @ U, defined
by the formula
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(R + 5)(g)(v +u) = R(g)v + S(g)u (2)

by the product of the representations R and S the linear representation RS
of the group G in the space V @ U, defined on decomposable elements by the
formula

(RS)(g)(v ®v) = R(g)v ® S(g)u 3)

The sum and product of an arbitrary number of representations are defined
analogously.

By the dual representation of a representation R we mean the represen-
tation R* of the group G in the space V* — the dual of V, given by the
formula

(R*(9)f)(v) = f(R(9)'v) (4)
It is easy to see that, if R and S are linear representations of a Lie group G,
then the representations B+ .5, RS and R* are also linear representations of
it as a Lie group (i.e. they are differentiable).

For any integers k,l > 0 the identity linear representation Id of the group
GL(V) in the space V generates its linear representation T} ; = Id¥(Id*)!
in the space V®...@ VRV*"®...® V" of tensors of type (k,I) on V. We

k l
will give convenient interpretations of representations 7% ; in the two most

commonly met cases: k = 0 and k = 1. Tensors of type (0,!) can be viewed
as l-linear forms on V. For any such form f we have

(Tou(A)f)(v1s... yu) = f(A 0y.... , A7) (5)

Tensors of type (1,!) can be viewed as I-linear maps V x ... x V — V. For
any such map F' we have

(T1,1(A)F)(v1,... ,u) = AF(A7 vy, , A7) (6)

The representations Ad and Sq of the group GL,(K) considered above, are
just its representations in the spaces of tensors (on K™) of type (1,1) and
(2, 0) respectively, expressed in the matrix form.

If R is a linear representation of some group G in a space Vand U C V is
an invariant subspace, there is a natural way to define the subrepresentation
Ry : G — GL(U) and the quotient representation Ry, : G — GL(V/U).
Clearly, every subrepresentation and every quotient representation of a linear
representation of a Lie group G are linear representations of it as a Lie group.

A special role in group theory is played by one-dimensional representa-
tions, which are precisely the homomorphisms from the given group to the
multiplicative group of the base field. They are referred to as characters ! of
the group G. Characters form a group with respect to the operation of mul-
tiplication of representations; the inverse of an element in this group is its
dual representation. We will denote the group of characters of a group G by

! Here the word character is being used in its narrower sense. In its wider sense character
refers to the trace of any (not necessarily one-dimensional) linear representation.
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X(G). Traditionally additive notation is used to denote its group operation,
thus by definition

(a1 + x2)(9) = xa(g)x2(g9) (x1,x2 € X(G)).

In the context of the theory of Lie groups characters are assumed to be
differentiable.

1.5. Local Lie Groups. In certain situations it turns out to be useful to have
a local version of the concept of a Lie group. By a local Lie group we mean a
differentiable manifold U together with a base point e, its neighbourhood V'
and a differentiable map (multiplication)

p:VxV U (z,y)—zy

satisfying the conditions ex = ze = z and (zy)z = z(yz) for z,y, z,zy,yz €
V. These conditions imply the existence of a neighbourhood of the identity
W C V and a differentiable map (inversion)

v W—W, z—z!

such that zz~! = 2712 = e for w € W. Every Lie group G can be viewed as
a local Lie group by taking V=U =G.

Replacing U and V' by neighbourhoods of the identity U; and V; C VNU,,
satisfying the condition V1V, C U, one obtains also a local Lie group, called
a restriction of the original one. By transitivity restriction generates a certain
equivalence relation of local Lie groups. Strictly speaking, by a local Lie group
one understands an equivalence class defined in this way. Two local Lie groups
are said to be isomorphic, if for some of their restrictions (Ui, e, Vi, u)
and (Ua, ey, Va, pz) there is a diffeomorphism f : U; — U, satisfying the
conditions f(e1) = ez, f(V1) = Vi and f(zy) = f(z)f(y) for z,y € V;. One
can easily see that isomorphism of local Lie groups is an equivalence relation.

The concepts of Lie subgroup, homomorphism of Lie groups, etc. have
natural local analogues and many theorems from the theory of Lie groups
can be formulated for local Lie groups (some of them even turn out to be
simpler). However the theory of local Lie groups does not have an independent
status for the reason that every local Lie group a posteriori turns out to be
a restriction of some Lie group. (This is a corollary of the theorem on the
existence of a Lie group with a given tangent algebra: see Theorem 2.11 of
Chap. 2).

Within the theory of Lie groups the significance of the concept of a local Lie
group lies basically in that it enables us to use local terminology. For example,
two Lie groups are said to be locally isomorphic if they are isomorphic as local
Lie groups. This definition is a precise interpretation of the intuitive notion
that two given Lie groups “look the same in a neighbourhood of the identity”.
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§2. Actions of Lie Groups

2.1. Definition of an Action. A homomorphism a from a Lie group G to
the group Diff X of diffeomorphisms of a differentiable manifold X is called
its action on X if the map G x X — X, (g,z) — a(g)z is differentiable.

Examples. 1. For any Lie group G one can define the following three actions
l,7,a on itself:

l(g)z = gz, r(9)z =297, a(g)z = grg™"

2. The natural action of the group GL,(K) on the projective space P(K™)
is a Lie group action.

3. Every linear representation R : G — GL(V) of a Lie group G can be
viewed as its action on the space V. This kind of action is called linear.

4. Analogously, every homomorphism f : G — GA(S) can be viewed as
an action of the Lie group G on the affine space S. Such an action is called
affine.

Clearly, the composition of an action f : G — Diff X and a homomorphism
f : H — G is an action of the Lie group H on the manifold X.

In cases where there is no danger of confusion we will write simply gz in
place of a(g)z.

Actions of Lie groups will be considered in detail in the second part of this
volume. We will use without any additional explanations certain common
terms which are defined there.

2.2. Orbits and Stabilizers. Suppose we are given an action o of a Lie
group G on a manifold X and let = be a point of this manifold. Consider the
map a, : G — X, g — a(g)z. Its image is precisely the orbit a(G)z of the
point z, and the pre-image of the point z is its stabilizer

G, ={g€G:a(g)zr ==z}

The pre-images of the other points of the orbit are the cosets of G.
From the definition of a Lie group action it follows that the map o, is
differentiable, and from the commutativity of the diagram

Gi—-)X

l(g)l la(g)

G =X
for any g € G, that it has constant rank.
It is known (see, for example, Dieudonné 1960), that a differentiable map
f : X — Y of constant rank k is linearizable in a neighbourhood of any point
of the manifold X. From this it follows that:
1) the pre-image of any point y = f(z) is a submanifold of codimension k
in X, with T, (f~(y)) = Kerd. f;
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2) for each point z € X there is some neighbourhood U such that its image
is a submanifold of dimension k in Y, with Ty (f(U)) = d- f(T=(X));
3) if f(X) is a submanifold in Y, then dim f(X) =k

Proof. The last part is proved in the following way: if we had dim f (X ) >k,
then in view of (2) the manifold f(X) would be covered by a countable
number of submanifolds of lower dimension, which is impossible. O

Applying this to the map a, constructed above we obtain the following
theorem:

Theorem 2.1. Let o be an action of a Lie group G on a differentiable
manifold X. For any point ¢ € X the map a; has a constant rank and if this
constant rank is k, then:

1) the stabilizer G, is a Lie subgroup of codimension k in G and Te(G.) =
Kerd.a,;

2) for some neighbourhood U of the identity in the group G the set o(U)x
is a submanifold of dimension k in X, and T (a(U)z) = deaz(Te(G));

3) if the orbit a(G)z is a submanifold in X, then dima(G)x = k.

We remark that the orbit is not always a submanifold. (A counter-example
will be given below).

Assertion 1) of the theorem can be used to prove that a given subgroup H
of a Lie group G is a Lie subgroup. For this purpose it suffices to realize H as
the stabilizer of some point for a certain action of the Lie group G. Moreover,
if the orbit of the point turns out to be a manifold of known dimension, then
assertion 3) makes it possible to compute the dimension of the subgroup H.

Applying these considerations to the representations Tj; of the group
GL(V) in tensor spaces (see 1.4) we find, in particular, that the group of
non-singular linear transformations, preserving some given tensor, is a linear
Lie group.

Examples. 1. By considering the representation of the group GL(V) in
the space B, (V) of symmetric bilinear forms (symmetric tensors of type
(0,2)) we see that the group O(V, f) of non-singular linear transformations
preserving a given symmetric bilinear form f is a linear Lie group. If the form
f is non-degenerate, then its orbit is open in B, (V') and, therefore,

dimO(V, f) = dim GL(V) — dim B, (V) = ___"("2‘ 1)

where n = dim V.

2. Analogously, by considering the representation of the group GL(V) in
the space B_(V) of alternating bilinear forms, we see that the group Sp(V, f)
of non-singular linear transformations preserving a given alternating bilinear
form f is a linear Lie group. If the form f is non-degenerate, then

_ n(n + 1)

dimSp(V, f) = dim GL(V') — dim B_(V) 5
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3. By considering the representation of the group GL(V') in the space of
bilinear operations on V (tensors of type (1,2)) we see that the group of
automorphisms of any algebra is a linear Lie group.

2.3. Images and Kernels of Homomorphisms. Let f : G — H be a homo-
morphism of Lie groups. Define an action a of G on the manifold H by the
formula

a(g)h = f(g)h,

where the right hand side is the product of elements in H. In other words, a
is the composite of the homomorphism f and the action ! of H on itself by
left translations.

Let e be the identity of the group H. Then o, = f, o(G)e = f(G) and
the stabilizer of the point e under the action o is just the kernel Ker f of
the homomorphism f. Applying Theorem 2.1 to the action a and the point
e € H, we obtain the following theorem

Theorem 2.2. Let f : G — H be a homomorphism of Lie groups. Then f
is a map of constant rank and if this rank is equal to k, then

1) Ker f is a Lie subgroup of codimension k in G, and T.(Ker f) = Kerd. f.
~ 2) For some neighbourhood U of the identity in the group G the set f(U)

is a submanifold of dimension k in H and T.(f(U)) = def(T(G))-
3) if f(G) is a Lie subgroup of H, then dim f(G) = k.

Example. Consider the homomorphism det : GLn(K) — K*. Its kernel is
the group SL,(K) of unimodular matrices. Since det GL,(K) = K* we have
rk det = 1 and hence SL,(K) is a Lie subgroup of codimension 1 in GL,(K).

Clearly, if f(G) is a submanifold, then f(G) is a Lie subgroup in H. The
following example shows that f(G) is not always a submanifold. Let f: R —
T™ be a homomorphism given by the formula

f(z) = (€%,... ,€%=) (ay,...,an €R)

It is known (see, for example, Bourbaki 1947), that if the numbers a1, ... ,an
are linearly independent over Q, then the set f(R) is dense in T™ (this is
the so called dense winding of the torus), and therefore, for n > 1 is not a
submanifold. In order that the set f(R) be a submanifold it is necessary and
sufficient for the numbers ay, ... ,a, to be commensurable.

2.4. Orbits of Compact Lie Groups. The preceding example makes the
following assertion particularly interesting.

Theorem 2.3. Every orbit of an action of a compact Lie group is a sub-
manifold.

Proof. Let a be an action of a compact Lie group G on a manifold X and
- let = € X. We will prove that the orbit (G)z is a submanifold in X. For this
purpose it is enough to verify that it is a submanifold in a neighbourhood of



