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Elementary particle physics has made remarkable progress in the past ten
years. We now have, for the first time, a comprehensive theory of particle
interactions. One can argue that it gives a complete and correct description of
all non-gravitational physics. This theory is based on the principle of gauge
symmetry. Strong, weak, and electromagnetic interactions are all gauge
interactions. The importance of a knowledge of gauge theory to anyone
interested in modern high energy physics can scarcely be overstated.
Regardless of the ultimate correctness of every detail of this theory, it is the
framework within which new theoretical and experimental advances will be
interpreted in the foreseeable future.

The aim of this book is to provide student and researcher with a practical
introduction to some of the principal ideas in gauge theories and their
applications to elementary particle physics. Wherever possible we avoid
intricate mathematical proofs and rely on heuristic arguments and illustrative
examples. We have also taken particular care to include in the derivations
intermediate steps which are usually omitted in more specialized communi-
cations. Some well-known results are derived anew, in a way more accessible
to a non-expert.

The book is not intended as an exhaustive survey. However, it should
adequately provide the general background necessary for a serious student
who wishes to specialize in the field of elementary particle theory. We also
hope that experimental physicists with interest in some general aspects of
gauge theory will find parts of the book useful.

The material is based primarily on a set of notes for the graduate courses
taught by one of us (L.F.L.) over the past six years at the Carnegie-Mellon
University and on lectures delivered at the 1981 Hefei (China) Summer
School on Particle Physics (Li 1981). It is augmented by material covered in
seminars given by the other author (T.P.C.) at the University of Minnesota
and elsewhere. These notes have been considerably amplified, reorganized,
and their scope expanded. In this text we shall assume that the reader has had
some exposure to quantum field theory. She or he should also be moderately
familiar with the phenomenology of high energy physics. In practical terms
we have in mind as a typical reader an advanced graduate student in
theoretical physics; it is also our hope that some researchers will use the book
as a convenient guide to topics that they wish to look up.

Modern gauge theory may be described as being a ‘radically conservative
theory’ in the sense used by J. A. Wheeler (see Wilczek 19826). Thus, one
extrapolates a few fundamental principles as far as one can, accepting some
‘paradoxes’ that fall short of contradiction. Here we take as axioms the
principles of locality, causality, and renormalizability. We discover that a
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certain class of relativistic quantum field theory, i.e. the gauge theory,
contains unexpected richness (Higgs phenomena, asymptotic freedom,
confinement, anomalies, etc.), which is necessary for an understanding of
elementary particle interactions. And yet, this does not occasion any revision
of the basic principles of relativity and quantum mechanics. Thus the
prerequisite for the study of gauge theory is just the traditional preparation in
advanced quantum mechanics and quantum field theory, especially the
prototype gauge theory of quantum electrodynamics (QED).

The book is organized in two parts. Part I contains material that can be
characterized as being ‘pre-gauge theory’. In Chapters 1, 2, and 3 the basics
of relativisitic quantum field theory (quantization and renormalization) are
reviewed, using the simple A¢* theory as an illustrative example. In Chapters
4 and 5 we present the elements of group theory, the quark model, and chiral
symmetry. The interrelationship of the above main topics—renormalization
and symmetry—is then studied in Chapter 6. The argument that quarks are
the basic constituents of hadrons is further strengthened by the discovery of
Bjorken scaling. Scaling and the quark—parton model are described in
Chapter 7. These results paved the way for the great synthesis of particle
interaction theories in the framework of the non-Abelian gauge theories,
which is treated in Part I1. After the classical and quantized versions of gauge
theories are discussed in Chapters 8 and 9, we are then ready for the core
chapters of this book—Chapters 10-14—where gauge theories of quantum
chromodynamics (QCD), quantum flavourdynamics (QFD), and grand
unification (GUT) are presented. As a further illustration of the richness of
the gauge theory structure we exhibit its nonperturbative solutions in the
form of magnetic monopoles and instantons in Chapters 15 and 16.

We have also included at the end of the book two appendices. In Appendix
A one can find the conventions and normalizations used in this book.
Appendix B contains a practical guide to the derivation of Feynman rules as
well as a summary of the propagators and vertices for the most commonly
used theories—the A¢*, Yukawa, QCD, and the (R, gauge) standard model
of the electroweak interaction.

In the table of contents we have marked sections and chapters to indicate
whether they are an essential part (unmarked), or details that may be omitted
upon a first reading (marked by an asterisk), or introductions to advanced
topics that are somewhat outside the book’s main line of development
(marked by a dagger). From our experience the material covered in the
unmarked sections is sufficient for a one-semester course on the gauge theory
of particle physics. Without omitting the marked sections, the book as a
whole is adequate for a two-semester course. It should also be pointed out
that although we have organized the sections according to their logical
interconnection there is no need (it is in fact unproductive!) for the reader to
strictly follow the order of our presentation. For example, §1.2 on path
integral quantization can be postponed until Chapter 9 where it will be used
for the first time when we quantize the gauge theories. As we anticipate a
readership of rather diverse background and interests, we urge each reader to
study the table of contents carefully before launching into a study pro-
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gramme. A certain amount of repetition is deliberately built into the book so
that the reader can pick and choose different sections without any serious
problems. An experimentally inclined reader, who is not particularly
interested in the formal aspects of relativistic quantum field theory, can skip
Chapters 1, 2, 3, and 6 on quantization and renormalization. After an
introductory study of group theory and the quark model in Chapters 4, 5,
and 7 she or he should proceed directly to the parts of Chapters 8, 10, 11, 12,
14, etc. where a general introduction to and applications of gauge theory
can be found.

The sections on references and bibliography at the end of the bock
represent some of the commonly cited references that we ourselves are
familiar with. They are not a comprehensive listing. We apologize to our
colleagues who have been inadequately referenced. Our hope is that we have
provided a sufficient set so that an interested reader can use it to go on to find
further reviews and research articles.

It is a pleasure to acknowledge the aid we have received from our
colleagues and students; many have made helpful comments about the
preliminary version of the book. We are very grateful to Professor Mahiko
Suzuki who undertook a critical reading of the manuscript, and also to
Professors James Bjorken, Sidney Drell, Jonathan Rosner, and Lincoln
Wolfenstein for having encouraged us to begin the conversion of the lecture
notes into a book. One of us (T.P.C.) would like to thank the National
Science Foundation, UMSL Summer Research Fellowship Committee, and
the Weldon Spring Endowment for support. During various stages of
working on this project he has enjoyed the hospitality of the theoretical
physics groups at the Lawrence Berkeley Laboratory, the Stanford Linear
Accelerator Center and the University of Minnesota. L.F.L. would like to
thank the Institute for Theoretical Physics at the University of California—
Santa Barbara for hospitality and the Department of Energy and the Alfred
P. Sloan Foundation for support. Finally, we also gratefully acknowledge the
encouragement and help given by our wives throughout this project. And, we
are much indebted to Ms Susan Swyers for the painstaking task of typing this
manuscript. Other technical assistance by Ms Tina Ramey and Mr Jerry
McClure is also much appreciated.

Note added in proof. As this manuscript was being readied for publication we
received the news that the CERN UA1 and UA2 groups have observed events
in pp collisions which may be interpreted as the production of an
intermediate vector boson W with a mass approximately 80 GeV. Also, the
Irvine-Michigan-Brookhaven collaboration reported a preliminary result
setting a lower bound for the lifetime t(p — e¢* 7% > 6.5 x 103! years.

St. Louis and Pittsburgh T.P.C.
September 1982 LF.L.
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The dynamics of a classical field ¢(x) are determined by the Lagrangian
density #(¢, d,¢) through the action principle

0S=0 (1.1)
where § is the action

S= Jd“x.?(q.‘), 2,8).

This extremization leads to the Euler-Lagrange equation of motion

92 &
“50,0) 66

To quantize a system we can adopt either of two equivalent approaches.
The canonical formalism involves the identification of the true dynamical
variables of the system. They are taken to be operators and are postulated to
satisfy the canonical commutation relations. The Hamiltonian of the system
is constructed and used to find the time evolution of the system. This allows
us to compute the transition amplitude from the state at an initial time to the
state at final time. Alternatively, we can use the Feynman path-integral
formalism to describe the quantum system. Here the transition amplitude is
expressed directly as the sum (a functional integral) over all possible paths
between the initial and final states, weighted by the exponential of i times the
action (in units of the Planck’s constant #) for the particular path. Thus in the
classical limit (A — 0) the integrand oscillates greatly, making a negligible
contribution to the integral except along the stationary path selected by the
action principle of eqn (1.1).

In this chapter we present an elementary study of field quantization. First
we review the more familiar canonical quantization procedure and its
perturbative solutions in the form of Feynman rules. Since we will find that
gauge field theories are most easily quantized using the path-integral
formalism we will present an introduction to this technique (and its
connection to Feynman rules) in §1.2. For the most part the simplest case of
the self-interacting scalar particle will be used as the illustrative example;
path-integral formalism for fermions will be presented in §t.3.

Since the path-integral formalism will not be used until Chapter 9 when we
quantize the gauge fields, the reader may wish to postpone the study of §§1.2
and 1.3 until then. It should also be pointed out that even for gauge theories
we shall use these two quantization formalisms in an intermixed fashion. By
this we mean that we will use whatever language is most convenient for the
task at hand, regardless of whether it implies path-integral or canonical

(1.2)
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1

4 Basics in field quantization 1.1

quantization. For example, in the discussion of the short-distance pheno-
mena in Chapter 10, we continue to use the language of ‘operator product
expansion’ even though strictly speaking this implies canonical quantization.
The reader is also referred to Appendix B at the end of the book where‘one
can find a practical guide to derivation of Feynman rules via path-integral
formalism.

IEW & TR R

We assume familiarity with the transition from a classical nonrelativistic
particle system to the corresponding quantum system. The Schrédinger
equation is obtained after we replace the canonical variables by operators
and the Poisson brackets by commutators. These operators act on the
Hilbert space of square integrable functions (the wavefunctions), and they
satisfy equations of motion which are formally identical to the classical
equations of motion.

A relativistic field may be quantized by a similar procedure. For a system
described by the Lagrangian density #(¢, é,¢), the field ¢(x) satisfies the
classical equation of motion given in eqn (1.2). We obtain the corresponding
quantum system by imposing the canonical commutation relations at equal
time

[n(x, 1), p(x’, ] = —id3(x — x)

[n(x, 1), n(x', 0] = [$(x, 1), p(x', )] =0 (1.3)
where the conjugate momentum is defined by
0¥
(x) = 6(60q§). (1.4)
The Hamiltonian
H= j‘d%{n(x) Oop(x) — L(x)] (1.5)

governs the dynamics of the system

5o¢(xs t) = l[H, ¢(X, t)]
don(x, ) = i[H, n(x, 1)]. (1.6)

Example 1.1. Free scalar field. Given the Lagrangian density
& = 3[(0:9)*¢) — 29?1,
eqn (1.2) yields the Klein—-Gordon equation
(@ + pH)p(x) = 0. (1.7)

In quantum field theory the field ¢(x) and its conjugate momentum operators
given by eqn (1.4), n(x) = do¢(x), satisfy the canonical commutation
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relations

[Pod(x, 1), p(x', )] = —id3(x — x)
[9ep(x, 1), Ood(x’, ] = [$(x, 1), (X', 1)] = 0. (1.8)

The Hamiltonian is given by

Hy= jd%&[(ﬁot)’))2 + (V) + u¢*]. (1.9)

The time evolution equation (1.6), which is basically Hamilton’s equation of
motion, can be cast in the form of (1.7). Thus the field operator ¢(x) formally
satisfies the Klein—Gordon equation. This simple non-interacting case can be
solved and we have

d’k

R ITeT N

[a(k) e**~ ) + ai(k) e "™ =] (1.10)
where o, = (k? + p?)'/2. The coefficients of expansion a(k) and a'(k) are
operators. The canonical commutation relations of eqn (1.8) are transcribed
into

[a(k), a'(k)] = 0*(k — k')

[a(k), a(k’)] = [a'(k), a'(k')] = O (1.11)

and the Hamiltonian of eqn (1.9) can be expressed as
Hy = [d:’kw,‘a*(k)a(k) (1.12)

where we have discarded an irrelevant constant. Remembering the situation
of the harmonic oscillator, we see immediately that a(k) and a'(k) can be
interpreted as destruction and creation operators. Thus the one-particle state
with momentum k is given by the creation operator acting on the vacuum
state

k) = [(2m)*2w,]"*a'(k)I0) (1.13)
where the normalization is
Kk = 2n)2w, 83k — k).

The product a'a has the usual interpretation as a number operator and eqn
(1.12) shows that H, is the Hamiltonian for a system of non-interacting
particles. '

Given the solution, (1.10), and (1.11), we can easily calculate the Feynman
propagator function, which is the vacuum expectation value for a time-
ordered product of two fields,

iA(x, — x3) = OIT((x,)d(x,))|0)
= 0(t; — 1,019 (x)P(x2)I0> + 625 — 1,)<01P(x;)(x,)I0D

d*k i _ }
= Qn)P kK — 12 1 ie expiik - (x, — x,)}. (1.14)



