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Introduction

The English teach mechanics as an experimental science, while on
the Continent, it has always been considered a more deductive and
a priori science. Unquestionably, the English are right.*

H. Poincaré, Science and Hypothesis

Descartes, Leibnitz, and Newton

As is well known, the basic principles of dynamics were stated by New-
ton in his famous work Philosophiae Naturalis Principia Mathematica, whose
publication in 1687 was paid for by his friend, the astronomer Halley. In
essence, this book was written with a single purpose: to prove the equivalence
of Kepler’s laws and the assumption, suggested to Newton by Hooke, that the
acceleration of a planet is directed toward the center of the Sun and decreases
in inverse proportion to the square of the distance between the planet and
the Sun. For this, Newton needed to systematize the principles of dynamics
(which is how Newton’s famous laws appeared) and to state the “theory of
fluxes” (analysis of functions of one variable). The principle of the equality
of an action and a counteraction and the inverse square law led Newton to
the theory of gravitation, the interaction at a distance. In addition, New-
ton discussed a large number of problems in mechanics and mathematics in
his book, such as the laws of similarity, the theory of impact, special vari-
ational problems, and algebraicity conditions for Abelian integrals. Almost
everything in the Principia subsequently became classic. In this connection,
A. N. Krylov, who translated the Principia into Russian, said that each sen-
tence from Newton’s book “was not forgotten but grew into large libraries of
manuals, treatises, dissertations, and thousands of journals.”

After these words, the modern reader will probably find it strange that
Newton’s Principia at first provoked a rather poor reaction in Continental
centers of science. For example, in 1689 (i.e., two years after the Principia
appeared), Leibnitz published an article explaining the planetary motions in
the spirit of Descartes’s vortex theory: not only a force directed toward the
Sun but also a circular motion of a tenuous matter (ether) influences the
planetary motion. He later returned to this question several times to describe
the model in more detail. We should not think that his ideas resulted from a
lack of knowledge: Newton and Leibnitz had a long correspondence with each
other. We must also note that Leibnitz was not an orthodox Cartesian. In
addition to a dispute with Newton over the priority in discovering the method
of infinitesimals, Leibnitz had a long polemic with people sharing Descartes’s
ideas. He insisted on the opinion that the true measure of motion was the

*[Translated from the Russian translation.]



2 Introduction

- n B Tt ¥

'M!Q@"V’*""""'*'U‘iiwi 3
. il
’,,,‘&gona-; LLEP P il

oy

mzn»uﬂﬁm- - s
i k 4 L
LT T Ly

“uy P Ll
laq'"’"’tnag-nﬂ"' o

P Y
(o, 4
B R e
B e L A

i ¥, St

i ! : - A ; ”"?"’lﬁvaa_pﬂ
e L L LT TiabE ko NN B 1R FROR s e AR patn e

e & N 33 sk . : | L

iy
ALY )
et

5 Y

Loy o

«‘.f"‘).‘«%‘
i

&

Ul

o 27 »
v LA
:

Ll
o 4
- . 2
Ry »
a8
e P

R _‘g)ﬂxj"‘ i
i .:&" ¥ E "é-'
Fig. 1. Detail of a diagram from the 1644 Principia philos-
ophiae of Rene Descartes, depicting his conception of the
cosmos as an aggregate of contiguous vortices, most with a

star at their center. The Sun is denoted by S.

weight of a body multiplied by the square of its velocity (vis viva according to
Leibnitz) and not the product of weight and velocity, as stated by Descartes.

In 1713, after the second edition of the Principia, the situation changed
abruptly. The new edition of Newton’s book was supplemented with some
added parts such as a well-developed foreword written by Cotes (a publisher
and a member of the Cambridge Trinity board) and also a general Precept
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added by Newton at the end of the Principia. In these materials, the vortex
theory was criticized rather sharply. In defining this Cartesian theory, Cotes’s
derisive style used expressions like “ridiculous invention,” “nonsense,” etc.
Newton’s style was more modest, although it is now known that Newton
himself carefully edited the foreword written by Cotes. This foreword offended
Leibnitz, who shared Descartes’s opinion on cosmogony and made a number
of essential additions, and it added fuel to the dispute over the priority in
discovering differential and integral calculus. The priority dispute is widely
known (see, e.g., the fascinating book by Arnold (8]). In contrast, the vortex
theory dispute has been almost forgotten today and is only briefly mentioned
in books on the history of mechanics. On the Continent, however, Newton'’s
works met strong opposition, which lasted for decades. Leibnitz was not
alone in opposing it; there were also such outstanding scientists as Huygens,
Varignon, J. and D. Bernoulli, etc. “The German and French scientists are
furiously attacking Newton’s philosophy and agree with Descartes’s,” Jones (a
supporter of Newton’s philosophy) wrotes to Cotes in 1711 (see [34]). Among
all the arguments for Newton’s theory, there was also a thesis proposing a
freedom of opinion: “They [the Cartesians — V. K.] do have the right to differ,
but they should be fair enough to others and let them wish the same freedom
that they desire to be given. So, let us hold to the philosophy of Newton,
which we consider to be more correct”* (a passage from the foreword written
by Cotes for the second edition of the Principia).

For a better understanding of the dispute, we recall some general ideas
in Descartes’s theory. These ideas were stated in Discours de la méthode
(1637) and in Principia philosophiae (1644). According to Descartes, the
understanding of cosmology starts from acceptance of the initial chaos, whose
moving elements are ordered according to certain fixed laws and form the
Cosmos. (As we see, these ideas have very much in common with those in
contemporary synergetics!) According to Descartes, the Universe is filled with
a tenuous fluid matter (prototype of the ether), which is constantly in a vortex
motion. This motion moves the largest particles of matter off the vortex axis,
and they subsequently form planets. Then, according to what Descartes wrote
in his Treatise on Light, “the material of the Heaven must rotate the planets
not only about the Sun but also about their own centers... and this will
hence form several small Heavens rotating in the same direction as the great
Heaven.”* The term vortez (tourbillon) originated from a comparison with a
river current swirling around objects carried by the water.

Huygens used a simple example to explain the main idea of the vortex
theory: vortex motions of water in a bucket. Two identical bodies placed
at different distances from the vortex axis rotate with different velocities.
The closer a body is to the axis, the greater its velocity. This observation
qualitatively corresponds to the law of the diminishing velocity of a planet in

*[Translated from the Russian translation.]
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accordance with its increasing distance from the Sun. But does it correspond
to Kepler’s law?

Newton and Bernoulli

Newton himself considered this question in the Principia (Chap. 9). Ac-
cording to Newton, if a homogeneous viscous liquid is moved by a cylinder
or sphere uniformly rotating about its axis, then in the stationary case, the
rotation period of liquid particles is respectively proportional to their distance
or squared distance from the axis of rotation. However, according to Kepler’s
third law, this should result in a semicubical function of distance. Newton
concludes the Precept for his theorems with the following words: “I would
like the philosophers to think of a condition by which it would be possible to
explain a phenomenon based on the sesquitripilicate proportion by the vortex
theory.”*

In his work (1730) awarded a prize by the Paris Academy of Sciences,
J. Bernoulli judged Newton’s ideas to be flawed. The subject for the com-
petition announced by the Academy was to explain the elliptical shape of
planetary orbits. (This occurred 40 years after Newton published his book!)
Incidentally, in this work, Bernoulli proposed the analytic method for obtain-
ing the elliptical shape of planetary orbits by applying the gravitation law
(which we can now find in mechanics textbooks). Newton used labored geo-
metric expressions in imitation of ancient authors. According to Bernoulli,
the dependence of the rotation period of a particle on distance also never
corresponded to Kepler’s law. Moreover, his conclusions turned out to be not
quite correct. The first correct solution of this hydrodynamic problem was
obtained by Stokes in 1845: when a cylinder or sphere rotates, the power of
the distance is respectively equal to two or three.

In the competition papers of 1732 and 1734 on the reason for the inclination
of planetary orbits to the Sun’s equator, J. Bernoulli gradually moved away
from the vortex theory. The ideas of D. Bernoulli (who shared the Paris
Academy prize with his father) evolved similarly.

Newton and Bernoulli both studied the viscous liquid. Incidentally, if we
consider Descartes’s ether an ideal fluid, we can simply obtain the semicubical
relation. For simplicity, we consider a plain-paralle! flow and obtain conditions
for uniform rotatory motion of flow particles. Let r be the distance from the
axis of rotation, v be the particle velocity, p be the liquid density, and p be the
pressure (v, p, and p are functions of r). It is easy to show that the continuity
equation

div(pv) =0

*[Translated from the Russian translation.|
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automatically holds, and two other dynamic equations reduce to the single
relation
2
v 7
—_— = s 1
P =P (1)

where the prime denotes the derivative with respect to r. This equation was
actually presented by Huygens in his theory of centrifugal forces. According
to Kepler’s law, v = ¢r'/2, ¢ = const. Taking, for example, p = po = const (a
homogeneous liquid), we obtain

CZ

pP=1Dpo— EOT——, po = const,

from (1). However, at small values of 7, the pressure is always negative; this
does not correspond to the properties of real liquids in normal conditions.
We must also note that the curl of the velocity field in rotatory motion is
orthogonal to the plane of the flow and equals [rv']/r. According to Newton
(with Stokes’s clarifications), v = Ci/r, C; = const. Hence, the liquid in
this case undergoes a vortex-free motion (with a multivalued potential). If we
accept Kepler’s law, we obtain the vortex flow (as it should be according to
Descartes).

Newton gave a simpler, but stronger, argument against Descartes’s theory.
According to Newton, the motion of celestial bodies is described by second-
order differential equations: to define a trajectory of a body, it is necessary
to specify not only its position but also its velocity at a certain instant. If
Descartes’s theory is in fact correct, bodies are carried by the ether, and
the equations of motion are consequently of first order: the velocity of a
particle depends only on its position. However, Newton noted that some of
the observed comets move in a direction opposite to that of all the planets.

Voltaire, Maupertuis, and Clairaut

It is necessary to say that far from all Continental scientists shared Des-
cartes’s ideas about the vortex theory. A number of famous French scientists
(Pascal, Fermat, Roberval, etc.) accepted his ideas rather guardedly. The
main role in promoting Newton’s theory belonged not to scientists but to the
writer and philosopher Voltaire. As we would say now, Voltaire was a dis-
sident. His Lettres philosophiques were based on comparing and contrasting
the situations in England and France. According to Voltaire, England is the
homeland of human reason: everything is fine on the blessed island w1th the
citizens enjoying their political freedom and freedom of thought. And/ all is
bad back home in France. The comparison of the London Royal Society and
the Paris Academy of Sciences, certainly, does not speak well for the latter.
According to Voltaire, the Society is independent, free of charge, and involved
in work, while the Academy is isolated from practical affairs and only publish-
es volumes of compliments. Voltaire compared Newton and Descartes in the



6 Introduction

same spirit. Newton is a wise man and modest besides, venturing to explain
Nature, while Descartes is a dreamer and all his philosophy is a novel. “Arriv-
ing in London, a Frenchman finds everything different including philosophy.
He left a full Universe and finds emptiness. In Paris, the Universe is viewed as
consisting of ether vortices; here, in the same world space, mysterious forces
direct the play. We think that pressure from the moon causes the tides, but
the English think that the sea is attracted to the moon. In Paris, the Earth
presents itself in the form of a melon; in London, it is flattened from two
sides”* (Letter 14). Voltaire’s ridicule in comparing the two systems was os-
tensibly directed equally to both sides. However, the reactions in Paris and in
London were different: his book was banned in France but met with approval
in England.

The Paris Academy of Sciences organized several expeditions to determine
the length of arcs of meridian with the objective of clarifying the shape of
the Earth. The expedition to Lapland (1735-1742) led by Maupertuis was
successful: the Earth appeared flattened at the poles, as predicted by New-
ton’s theory. Maupertuis was a Newtonian and was the one who explained
the meaning of his theory to Voltaire. But this did not save Maupertuis from
Voltaire’s malicious gibes concerning the theological aspects of the variational
principle of dynamics, which is named for Maupertuis today.

Gradually, primarily because of the works of Clairaut (incidentally, a par-
ticipant in the Maupertuis expedition), Newton’s theory of gravitation gained
a wide acceptance. First was his Theory of the Shape of the Earth based on
the law of gravitation. Second was Clairaut’s prediction of the appearance of
Halley’s comet in 1759 based on the perturbation theory. It is worth recalling
that the French translation of the Principia by the Marquise Emily du Chatlé
published in 1759 in Paris was edited by Clairaut. The initiator of this edition
was the same Voltaire.

According to Poincaré, each Truth has its instant of celebration between
the eternity when it is considered untrue and the eternity when it is considered
trivial. True, for Newton’s theory of gravitation, this instant lasted the life of
an entire generation. Moreover, our story does not end here.

Helmholtz and Thomson

The interest in the vortex theory revived in the middle of the 19th century
because of the works of Helmholtz and Thomson (Lord Kelvin) on the vortex
motion of an ideal fluid. It was proved that the circulation of velocity along
a closed contour moving together with the fluid particles is constant, and, as
a consequence, the law of the freezing-in of vortex lines was established. (We
recall Descartes’s ideas about the ether vortex transferring material bodies!)

The theory of vortex motion attracted even greater interest when Kelvin
proposed his vortex theory of atoms (“On vortex atoms,” Phil. Mag., 1867).

*[Translated from the Russian translation.]
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According to Kelvin, the Universe should be considered as a pure fluid (ether)
containing separate, indissolubly linked Helmholtz vortices (atoms grouped
into molecules). From this standpoint, gravitation should be explained sta-
tistically (in the spirit of Lesage’s theory of 1764) as the impacts from a large
number of small, rapidly moving vortices. Thomson proposed the beautiful
name ichthyodes for them. As Klein wrote in his book Development of Math-
ematics in the 19th Century, “the theory did not go beyond the bounds of a
remark, leading to nothing of substance, but it retains a known charm for the
susceptible imagination.”* In spite of this, Kelvin’s theory stimulated a range
of important research in studying the stability and fluctuations of various
vortex structures.

The leading idea of Thomson’s research program was the desire to find
a mechanical model of complex physical phenomena in which action at a
distance would be replaced with a direct contact (as in Descartes’s theory). At
that time, it was very popular to think that mechanics was a basis for physics.
For example, Maxwell in his earlier works considered an electromagnetic model
in which the induction currents of a magnet are caused by the medium rotating
about magnetic force lines and there are small frictional balls between the
rotating parts of the medium to avoid friction. Maxwell considered these
balls the true state of electricity. Despite significant efforts, Maxwell could .
not move far in constructing adequate mechanical models of electromagnetism.
Consequently, he accepted the now-usual idea of fields.

We also recall one more attempt to solve the problem of “action at a dis-
tance” using the theory of “latent motions.” The main idea of this theory
can be explained with the example of a rotating symmetric top. Because the
rotation of the top about its axis of symmetry cannot be observed, we can
suppose that the top does not rotate at all and explain its behavior by the
influence of additional gyroscopic and potential forces. In the general case,
this idea can be realized only within the framework of Routh’s theory of the
decrease of the order of systems with symmetries. We assume that a mechan-
ical system with n+1 degrees of freedom moves by inertia and its Lagrangian,
which equals the kinetic energy, has a one-parameter group of symmetries. If
we decrease the order of the system by factoring with respect to orbits of this -
group, we see that the Routh function, which equals the Lagrangian of the
reduced system with n degrees of freedom, contains a term independent of ve-
locity. This term can be interpreted as a potential force affecting the reduced
system. Helmholtz, W. Thomson (Lord Kelvin), J. J. Thomson, and Hertz
insisted on the idea that all the mechanical quantities appearing as “potential
energies” were in fact caused by latent “cyclic” motions. This concept of the
kinetic theory was most fully detailed by Hertz in his book The Principles
of Mechanics, Presented in a New Form. It turns out that a system with a
compact configuration space can really be obtained from geodesic flows by
using Routh’s method. However, in the case of a noncompact space (the most

*[Translated from the Russian translation.]



8 Introduction

interesting from the standpoint of the theory of gravitation), it is no longer
s0. '

About the Book

In the present book, one more attempt is made to “rehabilitate” Descartes’s
vortex theory. Certainly, this book does not develop the theory of action at
a distance in the spirit of Helmholtz and Thomson. Its main object is to sys-
tematize analogies between the usual mechanics of conservative systems and
ideal fluid dynamics. It turns out that the family of phase trajectories com-
posing an invariant manifold uniquely projected on the configuration space of
a mechanical system admits a natural and convenient description in the terms
of multidimensional hydrodynamics. On the other hand, in a number of prob-
lems, it is necessary to study not separate trajectories but families of them.
For example, in geometric optics, the main object for constructing images is
the ray system, not the separate light rays. If we also take the deep analo-
gy between optics and mechanics opened by J. Bernoulli and developed by
Hamilton into account, then the general theory of vortices stated in this book
allows comprehending the basic results in mechanics, geometric optics, and
hydrodynamics from a single standpoint. This theory reveals some general
mathematical ideas that appeared in mechanics, optics, and hydrodynamics
at different times under different names, and this gives a certain aesthetic
- pleasure. In addition, the general theory of vortices has interesting appli-
cations in numerical calculations, stability theory, and the theory of exact
integration of dynamic equations.

Paraphrasing Newton, this book could be called

PHILOSOPHIAE CARTESIAN PRINCIPIA MATHEMATICA.

The author dedicates this book to the 400th birthday of Rene Descartes, a
great scientist and human being, who, as Voltaire said, taught his contempo-
raries to reason.



Chapter 1
Hydrodynamics, Geometric Optics,
and Classical Mechanics

§1. Vortex Motions of a Continuous Medium

1.1. In the investigation of the general properties of vortex lines, a sig-
nificant role is played by the equation

FTZ_ = rot(u x v), (1.1)
where v(z,t) is the velocity of the particles of a medium in the three-dimen-
sional Euclidean space E3 = {z} and u(z, t) is a solenoidal vector field, divu =
0. The physical meaning of the field u is determined by the specific problem
under investigation. Integral curves of the vector field u (at a fixed instant ¢)
are called vortez lines.

For example, in magnetohydrodynamics, which deals with media of infinite
conductivity, Eq. (1.1) describes the magnetic field strength; in this case, the
vortex lines coincide with the magnetic field lines.

The barotropic flow of an ideal fluid in a potential force field is a more
fundamental example. We recall that fluid motion is described by the Euler

equation
v Ov op v
Ty \=—-24pF, F=-— 1.2
"(aﬁaﬁ’) 5z TP bz’ (1.2)
where p is the fluid density, p is the pressure, F is the external mass force
density, and V is the potential energy density. For a barotropic fluid, there
exists a pressure function P(z,t) such that ’
d
ap="22
P
In particular, a homogeneous fluid (p = const) is barotropic. To obtain a
closed system of equations, we must add the continuity equation

9 | . _
i div(pv) =0 (1.3)

to Euler equation (1.2); this equation expresses the mass conservation of the
moving volume.

Under these assumptions, Eq. (1.2) can be transformed into the form of
the Lamb equation

ov [6v [ouv\F of i
5;4—[%-(&')}0——‘8—3;, f—E+P+Vs (1.4)
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where the superscript T denotes transposition of the Jacobi matrix

o _|ov
dx || Bz

In hydrodynamics, the function f is usually called the Bernoulli function.

As is known, multiplying a skew-symmetric matrix dv/8z - (8v/8z)T by a
vector v in the three-dimensional Euclidean space, we obtain the vector cross
product (rotv) x v; therefore, Eq. (1.4) can be rewritten in the equivalent
form

v af
5t = U X 10ty — ——. (1.5)

Taking the curl of both sides and using the relation rot grad f = 0, we obtain
Eq. (1.1) with v = rotw; the field of a curl is always solenoidal because
divrot = 0. Vortex lines are integral curves of the field of the velocity curl
(vortex); this explains the choice of the term in the general case.

The motion of fluid particles in E3 is described by the differential equation

z = v(z,t), (1.6)

where the dot denotes differentiation with respect to t. Let xz(t, zo) be its
solution satisfying the initial condition (0, zo) = xo. The family of mappings
E® — E® defined by the formula

g — IB(t, 2}0) (]_.7)

is called the flow of system (1.6). In the stationary case, where v is indepen-
dent of ¢, the family of transformation (1.7) is a group. Transformations (1.7)
are usually denoted by g (or simply g* if this does not lead to confusion).

1.2. Let D be a measurable domain in E® and g*(D) be its image under
transformation (1.7). By (1.3), the mass of the moving domain g*(D) is
constant,

/ pd3z = const.
g*(D)

Now let ¥ be a two-dimensional bounded surface and I' = 8X be its bound-
ary. In fluid mechanics, the following formula for the flow of a solenoidal field
is well known:

; / (au )
— u,n)do = — +rot{v X u),n | do, 1.8
7 ) mdr= [ (G +rotlox ) (18)

where (-, -) denotes the inner product in the Euclidean space E3, n is a unit
normal vector, and do is the surface element of the surface £. Using (1.1),
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we obtain the conservation law for the flow of the field u through a moving
surface from (1.8):

/ (u,n)do = const. (1.9)
g* (%)

This implies the Helmholtz—-Thomson theorem on the freezing-in of vortex
lines: the flow of system (1.5) transforms vortex lines into vortex lines. This
result explains the appearance of magnetic storms on the Earth. The Sun
is a sphere of turbulent plasma with almost infinite conductivity. From time
to time, prominences appear on the Sun: matter is thrown to the surface of
the Sun with enormous speed and then dissipates and moves away. By the
Helmholtz—Thomson theorem, this matter transfers the magnetic field and
creates magnetic storms upon reaching the Earth.

Now let T be a closed contour, the boundary of a bounded surface ¥. We
consider the 1-form

(v,dz) = Z v; dzt.

The integral of this form over I' is called the circulation of the velocity along
the contour I' (Thomson). Applying the Stokes formula

}g‘(v,dx) = L(u,n)da, u=rotuv,

and taking (1.9) into account, we obtain the theorem on the constancy of the
circulation of the velocity along the “fluid” contour:

f (v,dr) = const . (1.10)
gt (%)

The Lagrange theorem on potential flows is an important consequence of
this result. We recall that the velocity field v(z,t) is said to be a potential
field if

Op
= —. 1.11
V=g (1.11)
The function @(z,t) is called the potential. The Lagrange theorem states that
if the velocity field of a barotropic ideal fluid in a potential force field is a
potential field at the initial instant (e.g., t = 0), then it is a potential field for
all t.
Substituting (1.11) in Lamb equation (1.5) and using the obvious identity
dp

rot;% =0,

o [0y _
%(E_'_f) =0.

we obtain the relation
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Therefore, the expression in parentheses is a function depending only on time:
Bp 1 (08¢ 2
Bt +§ (E’I;) +P.+V—g(t). (1.12)

This relation is called the Lagrange—Cauchy integral. Performing the gauge
transformation

p— w—/g(t)dt,
which preserves the velocity field, we obtain Eq. (1.12) with g = 0.

1.3. We return to the investigation of Egs. (1.1) and (1.3). We set w =
u/p. It is clear that integral curves of the field w are exactly the vortex lines
introduced above.

Theorem 1. The field w(x,t) satisfies the equation
ow
ot

The bracket [-, -] is the commutator of vector fields. We recall its defi-

nition. Let a = {a;} and b = {b;} be two vector fields. The field ¢ = {¢}
defined as

= [v,w)]. (1.13)

with the components

is called the commutator of these fields. If Ly, Ly, and L. are the differentia-
tion operators along the respective fields a, b, and ¢, then

L. = LyLy — Lo L.

The expression in the right-hand side of this relation is the commutator of
the operators L, and L.

The fields a and b commaute if [a,b] = 0. This property occurs if and only
if the phase flows of the fields ¢ and b commute, i.e.,

595 = 9395
for all p,qg € R.
Theorem 1 was initially obtained by Arnol’d (3] for the case of a homoge-
neous ideal fluid, where p = const; in this case, we can take w = rotv. The
general case is considered in [40]. If the medium motion is stationary, then

the fields v and u/p commute (at first glance, the fields u and pv, the momen-
tum density, seem to commute). Equation (1.13) is usually called the Euler



